Bayesian Model Averaging Continual Reassessment Method for Bivariate Binary Efficacy and Toxicity Outcomes in Phase I Oncology Trials

2014 ◽  
Vol 24 (2) ◽  
pp. 310-325 ◽  
Author(s):  
Takashi Asakawa ◽  
Akihiro Hirakawa ◽  
Chikuma Hamada
2015 ◽  
Vol 14 (2) ◽  
pp. 108-119 ◽  
Author(s):  
Ick Hoon Jin ◽  
Lin Huo ◽  
Guosheng Yin ◽  
Ying Yuan

Author(s):  
Lorenzo Bencivelli ◽  
Massimiliano Giuseppe Marcellino ◽  
Gianluca Moretti

2021 ◽  
pp. 174077452110015
Author(s):  
Matthew J Schipper ◽  
Ying Yuan ◽  
Jeremy MG Taylor ◽  
Randall K Ten Haken ◽  
Christina Tsien ◽  
...  

Introduction: In some phase I trial settings, there is uncertainty in assessing whether a given patient meets the criteria for dose-limiting toxicity. Methods: We present a design which accommodates dose-limiting toxicity outcomes that are assessed with uncertainty for some patients. Our approach could be utilized in many available phase I trial designs, but we focus on the continual reassessment method due to its popularity. We assume that for some patients, instead of the usual binary dose-limiting toxicity outcome, we observe a physician-assessed probability of dose-limiting toxicity specific to a given patient. Data augmentation is used to estimate the posterior probabilities of dose-limiting toxicity at each dose level based on both the fully observed and partially observed patient outcomes. A simulation study is used to assess the performance of the design relative to using the continual reassessment method on the true dose-limiting toxicity outcomes (available in simulation setting only) and relative to simple thresholding approaches. Results: Among the designs utilizing the partially observed outcomes, our proposed design has the best overall performance in terms of probability of selecting correct maximum tolerated dose and number of patients treated at the maximum tolerated dose. Conclusion: Incorporating uncertainty in dose-limiting toxicity assessment can improve the performance of the continual reassessment method design.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1098
Author(s):  
Ewelina Łukaszyk ◽  
Katarzyna Bień-Barkowska ◽  
Barbara Bień

Identifying factors that affect mortality requires a robust statistical approach. This study’s objective is to assess an optimal set of variables that are independently associated with the mortality risk of 433 older comorbid adults that have been discharged from the geriatric ward. We used both the stepwise backward variable selection and the iterative Bayesian model averaging (BMA) approaches to the Cox proportional hazards models. Potential predictors of the mortality rate were based on a broad range of clinical data; functional and laboratory tests, including geriatric nutritional risk index (GNRI); lymphocyte count; vitamin D, and the age-weighted Charlson comorbidity index. The results of the multivariable analysis identified seven explanatory variables that are independently associated with the length of survival. The mortality rate was higher in males than in females; it increased with the comorbidity level and C-reactive proteins plasma level but was negatively affected by a person’s mobility, GNRI and lymphocyte count, as well as the vitamin D plasma level.


Sign in / Sign up

Export Citation Format

Share Document