An explicit formula for the Euler polynomials

2006 ◽  
Vol 17 (6) ◽  
pp. 451-454 ◽  
Author(s):  
Qiu-Ming Luo
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

The main aim of this paper is to investigate multifarious properties and relations for the gamma distribution. The approach to reach this purpose will be introducing a special polynomial including gamma distribution. Several formulas covering addition formula, derivative property, integral representation and explicit formula are derived by means of the series manipulation method. Furthermore, two correlations including Bernoulli and Euler polynomials for gamma distribution polynomials are provided by utilizing of their generating functions.


2019 ◽  
Vol 15 (01) ◽  
pp. 67-84 ◽  
Author(s):  
Ugur Duran ◽  
Mehmet Acikgoz

In this paper, we primarily consider a generalization of the fermionic [Formula: see text]-adic [Formula: see text]-integral on [Formula: see text] including the parameters [Formula: see text] and [Formula: see text] and investigate its some basic properties. By means of the foregoing integral, we introduce two generalizations of [Formula: see text]-Changhee polynomials and numbers as [Formula: see text]-Changhee polynomials and numbers with weight [Formula: see text] and [Formula: see text]-Changhee polynomials and numbers of second kind with weight [Formula: see text]. For the mentioned polynomials, we obtain new and interesting relationships and identities including symmetric relation, recurrence relations and correlations associated with the weighted [Formula: see text]-Euler polynomials, [Formula: see text]-Stirling numbers of the second kind and Stirling numbers of first and second kinds. Then, we discover multifarious relationships among the two types of weighted [Formula: see text]-Changhee polynomials and [Formula: see text]-adic gamma function. Also, we compute the weighted fermionic [Formula: see text]-adic [Formula: see text]-integral of the derivative of [Formula: see text]-adic gamma function. Moreover, we give a novel representation for the [Formula: see text]-adic Euler constant by means of the weighted [Formula: see text]-Changhee polynomials and numbers. We finally provide a quirky explicit formula for [Formula: see text]-adic Euler constant.


2015 ◽  
Vol 93 (2) ◽  
pp. 186-193 ◽  
Author(s):  
MASANOBU KANEKO ◽  
MIKA SAKATA

We give three identities involving multiple zeta values of height one and of maximal height: an explicit formula for the height-one multiple zeta values, a regularised sum formula and a sum formula for the multiple zeta values of maximal height.


2018 ◽  
Vol 40 (6) ◽  
pp. 1594-1618
Author(s):  
SEBASTIÁN DONOSO ◽  
ANDREAS KOUTSOGIANNIS ◽  
WENBO SUN

For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.


2014 ◽  
Vol 01 (03) ◽  
pp. 1450023 ◽  
Author(s):  
Bin Li ◽  
Qihe Tang ◽  
Lihe Wang ◽  
Xiaowen Zhou

We aim at quantitatively measuring the liquidation risk of a firm subject to both Chapters 7 and 11 of the US bankruptcy code. The firm value is modeled by a general time-homogeneous diffusion process in which the drift and volatility are level dependent and can be easily adjusted to reflect the state changes of the firm. An explicit formula for the probability of liquidation is established, based on which we gain a quantitative understanding of how the capital structures before and during bankruptcy affect the probability of liquidation.


2021 ◽  
Vol 236 ◽  
pp. 109454
Author(s):  
Haixiao Liu ◽  
Ke Liang ◽  
Jinsong Peng ◽  
Zhong Xiao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document