SMILES-based QSAR and molecular docking study of xanthone derivatives as α-glucosidase inhibitors

Author(s):  
Shahin Ahmadi ◽  
Zohreh Moradi ◽  
Ashwani Kumar ◽  
Ali Almasirad
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fariba Peytam ◽  
Ghazaleh Takalloobanafshi ◽  
Toktam Saadattalab ◽  
Maryam Norouzbahari ◽  
Zahra Emamgholipour ◽  
...  

AbstractIn an attempt to find novel, potent α-glucosidase inhibitors, a library of poly-substituted 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines 3a–ag have been synthesized through heating a mixture of 2-aminobenzimidazoles 1 and α-azidochalcone 2 under the mild conditions. This efficient, facile protocol has been resulted into the desirable compounds with a wide substrate scope in good to excellent yields. Afterwards, their inhibitory activities against yeast α-glucosidase enzyme were investigated. Showing IC50 values ranging from 16.4 ± 0.36 µM to 297.0 ± 1.2 µM confirmed their excellent potency to inhibit α-glucosidase which encouraged us to perform further studies on α-glucosidase enzymes obtained from rat as a mammal source. Among various synthesized 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines, compound 3k exhibited the highest potency against both Saccharomyces cerevisiae α-glucosidase (IC50 = 16.4 ± 0.36 μM) and rat small intestine α-glucosidase (IC50 = 45.0 ± 8.2 μM). Moreover, the role of amine moiety on the observed activity was studied through substituting with chlorine and hydrogen resulted into a considerable deterioration on the inhibitory activity. Kinetic study and molecular docking study have confirmed the in-vitro results.


2021 ◽  
Author(s):  
Fariba Peytam ◽  
Ghazaleh Takalloobanafshi ◽  
Toktam Saadattalab ◽  
Zahra Emamgholipour ◽  
Maryam Norouzbahari ◽  
...  

Abstract In an attempt to find novel, potent α-glucosidase inhibitors, a library of poly-substituted 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines 3a-ag have been synthesized through heating a mixture of 2-aminobenzimidazoles 1 and α-azidochalcone 2 under the mild conditions. This efficient, facile protocol has been resulted into the desirable compounds with a wide substrate scope in good to excellent yields. Afterwards, their α-glucosidase inhibitory activities were investigated. Showing IC50 values ranging from 16.4 ± 0.36 µM to 297.0 ± 1.2 µM confirmed their excellent potency to inhibit α-glucosidase which may provide new drug candidates in the treatment of type II diabetes mellitus. Among various synthesized 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines, compound 3k exhibited the highest potency against α-glucosidase (IC50 = 16.4 ± 0.36 μM) which was 45.7 times more potent than acarbose as standard inhibitor (IC50 = 750.0 ± 1.5 μM). Moreover, the role of amine moiety on the observed activity was studied through substituting with chlorine and hydrogen resulted into a considerable deterioration on the inhibitory activity. Kinetic study and molecular docking study have confirmed the in-vitro results.


2018 ◽  
Vol 10 (16) ◽  
pp. 1889-1905 ◽  
Author(s):  
Rashad Al-Salahi ◽  
Rohaya Ahmad ◽  
ElHassane Anouar ◽  
Nor Izzati Iwana Nor Azman ◽  
Mohamed Marzouk ◽  
...  

2017 ◽  
Vol 26 (10) ◽  
pp. 2675-2691 ◽  
Author(s):  
Nikhil C. Jadhav ◽  
Akshata R. Pahelkar ◽  
Neha V. Desai ◽  
Vikas N. Telvekar

Sign in / Sign up

Export Citation Format

Share Document