LOW TEMPERATURE FLOW CHARACTERISTICS OF SOME WAXY CRUDE OILS IN RELATION TO THEIR COMPOSITION : PART I WITH AND WITHOUT POUR POINT DEPRESSANT ADDITIVES

1997 ◽  
Vol 15 (5-6) ◽  
pp. 495-502 ◽  
Author(s):  
D. Sree Lakshmi ◽  
M. Rama Krishna ◽  
M. Vanketasrrwar Rao ◽  
M. Bhagvanth Rao ◽  
R.C. Purohit ◽  
...  
2012 ◽  
Vol 524-527 ◽  
pp. 1844-1847 ◽  
Author(s):  
Hong Zhang ◽  
Wen Fa Xiao

The situation of low temperature crude oil pipeline carrying is universal. The rapid developing of pipe line supposes higher asking on new carrying technology. The problem of long distance carrying at normal temperature of high waxy crude oil is impel to resolve and its potential social economic profit is obvious. As the pipeline is designed at high production period of field so there must have low carrying situation at beginning and ending time. At the situation the high waxy crude oil and high pour point crude oil will face on great resistance and blockage problem. Further more the pipeline has to make great energy expense on high temperature carrying. So take new carrying technology to realize atmosphere temperature carrying is crucial of resolving low temperature carrying. The method of adding chemical pour point depressant(PPD)/flow improver additives (FIA) into crude oil directly was widely used at present. The progress of the additives and its study methods was summarized in the paper and supply some reference for the technology of PPD/FIA.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Biswadeep Pal ◽  
Tarun Kumar Naiya

Summary Pour-point depressants (PPDs) were synthesized from natural sources and used in waxy crude oil transportation to reduce the pour point and improve flow. A biodegradable PPD (BPPD) was synthesized and tested to mitigate crude oil flow assurance problems in the present work. The transesterification process was used to synthesize coconut oil ethyl ester (COEE, termed as BPPD). Fourier transform electron spectroscopy (FTIR), proton nuclear magnetic resonance (H-NMR), and microscopic analysis were performed for better understanding of mechanisms for both BPPD and a commercially available PPD named PPD-A. The pour point of crude oil was reduced by 12 and 9°C after the addition of 800 ppm BPPD and PPD-A, respectively. The microscopic analysis confirms that the crystals of wax converted to very fine and dispersed particles during mixing of additives, which in turn increase flowability. BPPD performs better to reduce interfacial tension than PPD-A. The maximum reduction of 19% in interfacial tension was observed after the addition of 800 ppm BPPD. BPPD alters the wettability of the pipeline surface from intermediate wet to water-wet within 60 seconds, which results in reduced slip velocity and consequently lessens the deposition of wax. As a result, crude oils will not stick to the wall of the pipe surface and will experience less resistance to flow through pipelines. FTIR analysis indicated that long-chain alkane and aromatic groups are responsible for a higher pour point, and their concentration level was reduced after the addition of BPPD. The viscosity of crude oil was reduced by almost 94% after the addition of 800 ppm BPPD with crude oil, which in turn minimizes pumping costs for crude oil. As a result, the total project cost was reduced substantially. Biodegradability tests confirm that the BPPD is biodegradable and nontoxic. Due to its biodegradability and nontoxic nature, BPPD has a promising capacity to be used in the petroleum industry for easier pipeline transportation of waxy crude.


Fuel ◽  
2018 ◽  
Vol 216 ◽  
pp. 898-907 ◽  
Author(s):  
Guangwen Xu ◽  
Yuan Xue ◽  
Zhicheng Zhao ◽  
Xiang Lian ◽  
Hualin Lin ◽  
...  

2018 ◽  
Vol 57 (25) ◽  
pp. 8612-8619 ◽  
Author(s):  
Yongwen Ren ◽  
Long Fang ◽  
Zhaojun Chen ◽  
Hui Du ◽  
Xiaodong Zhang

Author(s):  
Jiaqiang Jing ◽  
Zhongyuan Guan ◽  
Xiaoqin Xiong ◽  
Hua Tian ◽  
Liwen Tan

It has been proved that the flow improver makes the transportation of waxy crude oils in pipeline much more economic and safe, but so far an universal flow improver for various waxy crude oils has not been found because of inadequately understanding the action mechanism of the flow improvers. Therefore it is necessary for the mechanism to be studied further. A series of synthetic waxy oils (SWOs) with or without flow improver GY1, a long chain alkyl acrylate polymer based chemical, are prepared from 25# transformer oil, 50#, 60# (macrocrystalline) and 80# (microcrystalline) wax, single or mixed, and in some cases 60# road asphalt by mixing the ingredients at 100°C for 1 hour. Characteristic temperatures, viscosity-temperature properties and rheological behaviors are studied by using rheological techniques, and microstructures of wax crystals grown from SWOs at 20 °C are analyzed by using a polarization microscopy. Some abnormal viscosity-temperature properties of SWOs are found, which mainly results from wax crystallization and network structure formed by wax crystals. The mechanisms involved in the structure formation and fluidity improved by chemical for SWOs are discussed here. Studies show that the structure formation is followed by the formation of crystal nuclei, growth and interconnection or bridging of the wax crystal particles, which is closely relevant to wax molecular dimension and content, crystalline particle size, shape, concentration and surface characteristics. GY1 added into the SWOs lowers their cloud points by 0–2.0 °C and enhances the amounts of wax precipitated at 30 °C by 10–35wt%, which might not be involved in the mechanisms of the fluidity improving under this study. The extent of pour point depression by GY1 increases with increasing the wax molecular size and decreasing the wax content in the SWOs. As long as the SWO treated by GY1 has a greater yield stress reduction at the temperature closed to its pour point, its viscosity and pour point reduction will be more obvious. The common shortcut of pour point depression and viscosity reduction is to inhibit or desintegrate the formation of paraffin crystal network. The mechanisms involved in fluidity improvement of waxy crude oils by chemicals include modifying surface properties of waxy crystals and promoting crystal particle growth with higher symmetry.


2019 ◽  
Vol 37 (15) ◽  
pp. 1747-1754 ◽  
Author(s):  
Adesina Fadairo ◽  
Temitope Ogunkunle ◽  
Oreoluwa Lana ◽  
Adebowale Oladepo ◽  
Lawal Babajide

Sign in / Sign up

Export Citation Format

Share Document