hydrocarbon fuels
Recently Published Documents


TOTAL DOCUMENTS

932
(FIVE YEARS 172)

H-INDEX

62
(FIVE YEARS 9)

2021 ◽  
Vol 66 (4) ◽  
pp. 189-204
Author(s):  
Elham Saidi ◽  
◽  
Mahmoud Ziarati ◽  
Khandan Nahid ◽  
Hossein Dehghani ◽  
...  

Scilight ◽  
2021 ◽  
Vol 2021 (47) ◽  
pp. 471106
Author(s):  
Ashley Piccone
Keyword(s):  

Author(s):  
Wei Jiang ◽  
Jing-Pei Cao ◽  
Jin-Xuan Xie ◽  
Liang Zhao ◽  
Chuang Zhang ◽  
...  

Author(s):  
Daniel Silalahi ◽  
Minto Supeno ◽  
Muhammad Taufik

Cracking catalytic palm oil (CPO) into hydrocarbon fuel by saponification pretreatment has been carried out with bentonite and limestone-based catalysts. The catalysts used were Na-bentonite and Limestone NTT which were first analyzed using XRF, XRD, and SEM. Saponification pretreatment was carried out on CPO to facilitate the cracking process using a catalyst. The saponification product in the form of a mixture of soap and glycerol was then analyzed by DSC to determine the degradation temperature. Catalytic cracking is carried out in two stages, namely, the first stage hydrocracking at a temperature of 250-350°C using a stainless steel reactor is the source of catalyst Fe / Cr. The resulting distillate was then cracked again using a Na-bentonite catalyst and a TKNTT catalyst. The resulting fuel is a hydrocarbon fuel which is confirmed from the FT-IR results which indicate the presence of long-chain hydrocarbon compounds. This data is also supported by the results of the GC-MS analysis which shows that the fuel fraction produced is mostly biogasoline. Where cracking using a Na-bentonite catalyst produces a biogasoline fraction of 61.36% and a biodiesel fraction of 38.63%, THAT produces a biogasoline fraction of 88.88% and a biodiesel fraction of 11.11%. The characteristics of the hydrocarbon fuels that have been analyzed show that the calorific value of combustion is 6101 cal/g which is determined using a bomb calorimeter, and the cetane index is 62 which is analyzed using CCI. Both types of hydrocarbon fuels have met the physical requirements that must be possessed by biogasoline fuel based on SNI standards.


Author(s):  
Mohammad-Reza Mohammadi ◽  
Fahimeh Hadavimoghaddam ◽  
Saeid Atashrouz ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Ali Abedi ◽  
...  

Author(s):  
Kelechi Angelina Iheonye ◽  
Ifeanyichukwu Edeh ◽  
Ibrahim Kolawole Muritala ◽  
Ayoade Kuye

Aim: The use of synthetic catalysts in pyrolysis of waste plastics into hydrocarbon fuels is the common practice, these synthetic/ commercial catalysts are not readily available in Nigeria. The aim of this research paper is to prepare and characterize and test the catalytic performance of a locally made catalyst for waste plastic to hydrocarbon fuel pyrolysis. Study Design: locally made catalyst was prepared from coconut shells, its elemental composition, structural morphology and pore properties investigated using appropriate instruments and methods. Place and Duration: The experiments were carried out at the Petroleum Development Laboratory, situated at the Gas Engineering building, University of Port-Harcourt Nigeria. It took about 18 months to complete this study. Methodology: Thermal and chemical activation methods were used to prepare the local catalyst from coconut shells. Scanning electron microscopy method was used to investigate the morphology and texture of the coconut shell activated carbon catalyst. Response Surface Method (RSM) in design expert software 12.0 was used to design the experiment, and investigate the effect of operating parameters on the response variable. Results: The assessment of coconut shell activated carbon shows it can be used as an alternate to synthetic catalysts. This is because more than 60 % fuel oil was recovered when it was used in the pyrolysis of waste sac bags Conclusion: Coconut shell activated carbon is effective in the conversion of waste sac bags high purity hydrocarbon fuels such as aviation kerosene.


Sign in / Sign up

Export Citation Format

Share Document