A novel framework of multivariate modeling of water distribution network through 33 factorial design and artificial neural network

2019 ◽  
Vol 54 (6) ◽  
pp. 551-562
Author(s):  
Partha S. Ghosal ◽  
Ashwini Javaregowda ◽  
Ashok K. Gupta ◽  
Dineshwar P. Singh
2007 ◽  
Vol 9 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Zhengfu Rao ◽  
Fernando Alvarruiz

As part of the POWADIMA research project, this paper describes the technique used to predict the consequences of different control settings on the performance of the water-distribution network, in the context of real-time, near-optimal control. Since the use of a complex hydraulic simulation model is somewhat impractical for real-time operations as a result of the computational burden it imposes, the approach adopted has been to capture its domain knowledge in a far more efficient form by means of an artificial neural network (ANN). The way this is achieved is to run the hydraulic simulation model off-line, with a large number of different combinations of initial tank-storage levels, demands, pump and valve settings, to predict future tank-storage water levels, hydrostatic pressures and flow rates at critical points throughout the network. These input/output data sets are used to train an ANN, which is then verified using testing sets. Thereafter, the ANN is employed in preference to the hydraulic simulation model within the optimization process. For experimental purposes, this technique was initially applied to a small, hypothetical water-distribution network, using EPANET as the hydraulic simulation package. The application to two real networks is described in subsequent papers of this series.


2019 ◽  
Vol 39 (5) ◽  
pp. 917-930 ◽  
Author(s):  
Sarika Sharma ◽  
Smarajit Ghosh

Purpose This paper aims to develop a capacitor position in radial distribution networks with a specific end goal to enhance the voltage profile, diminish the genuine power misfortune and accomplish temperate sparing. The issue of the capacitor situation in electric appropriation systems incorporates augmenting vitality and peak power loss by technique for capacitor establishments. Design/methodology/approach This paper proposes a novel strategy using rough thinking to pick reasonable applicant hubs in a dissemination structure for capacitor situation. Voltages and power loss reduction indices of distribution networks hubs are shown by fuzzy enrollment capacities. Findings A fuzzy expert system containing a course of action of heuristic rules is then used to ascertain the capacitor position appropriateness of each hub in the circulation structure. The sizing of capacitor is solved by using hybrid artificial bee colony–cuckoo search optimization. Practical implications Finally, a short-term load forecasting based on artificial neural network is evaluated for predicting the size of the capacitor for future loads. The proposed capacitor allocation is implemented on 69-node radial distribution network as well as 34-node radial distribution network and the results are evaluated. Originality/value Simulation results show that the proposed method has reduced the overall losses of the system compared with existing approaches.


2016 ◽  
Vol 36 (1) ◽  
pp. 178-185
Author(s):  
R Uhumnwangho ◽  
E Omorogiuwa ◽  
G Offor

 A study of hourly voltage log taken over a period of six months from Rumuola Distribution network Port Harcourt, Rivers State indicates that power quality problems prevalent in the Network are undervoltage/voltage sags and overvoltage/voltage swells. This paper aims at addressing these power quality problems in the distribution network using artificial neural network (ANN) controller based dynamic voltage restorer (DVR). The artificial neural networks controller engaged to controlling the dynamic voltage restorer were trained with input and output data of proportional integral (PI) controller and of unit amplitude generator obtained during simulation. All simulations and modeling were carried out in MathLab/Simulink. Proposed dynamic voltage restorer was tested with replicated model of Rumuola substation by simulating with sample of average voltage for Omerelu, Waterlines, Rumuola, Shell Industrial and Barracks feeders. Simulation results showed that DVR is effective in compensating for under-voltage and over-voltage in Rumuola Distribution network Port Harcourt, Rivers State. http://dx.doi.org/10.4314/njt.v36i1.23


Sign in / Sign up

Export Citation Format

Share Document