Geothermometry of garnet-cordierite rocks in Kilsbergen and northern Tiveden, southern Sweden

1993 ◽  
Vol 115 (4) ◽  
pp. 339-344 ◽  
Author(s):  
Anders Wikström ◽  
Lena Larsson
Keyword(s):  
2002 ◽  
Vol 8 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Emil Broman ◽  
Kjell Wallin ◽  
Margareta Steén ◽  
Göran Cederlund

1993 ◽  
Vol 25 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Johan Berglund ◽  
Rickard Eitrem
Keyword(s):  

Author(s):  
Niels Hemmingsen Schovsbo ◽  
Arne Thorshøj Nielsen

The Lower Palaeozoic succession in Scandinavia includes several excellent marine source rocks notably the Alum Shale, the Dicellograptus shale and the Rastrites Shale that have been targets for shale gas exploration since 2008. We here report on samples of these source rocks from cored shallow scientific wells in southern Sweden. The samples contain both free and sorbed hydrocarbon gases with concentrations significantly above the background gas level. The gases consist of a mixture of thermogenic and bacterially derived gas. The latter likely derives from both carbonate reduction and methyl fermentation processes. The presence of both thermogenic and biogenic gas in the Lower Palaeozoic shales is in agreement with results from past and present exploration activities; thermogenic gas is a target in deeply buried, gas-mature shales in southernmost Sweden, Denmark and northern Poland, whereas biogenic gas is a target in shallow, immature-marginally mature shales in south central Sweden. We here document that biogenic gas signatures are present also in gas-mature shallow buried shales in Skåne in southernmost Sweden.


GFF ◽  
1998 ◽  
Vol 120 (4) ◽  
pp. 337-340
Author(s):  
Benyam Estifanos ◽  
Leif Johansson ◽  
Kenny Ståhl ◽  
Thomas Wroblewski
Keyword(s):  

Ecosystems ◽  
2021 ◽  
Author(s):  
Robert O’Dwyer ◽  
Laurent Marquer ◽  
Anna-Kari Trondman ◽  
Anna Maria Jönsson

AbstractClimate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.


1999 ◽  
Vol 29 (7) ◽  
pp. 1015-1026 ◽  
Author(s):  
Urban Nilsson ◽  
Göran Örlander

A field experiment was established between 1989 and 1993 to study the effects of competing vegetation on growth of planted Norway spruce (Picea abies (L.) Karst.) seedlings. Effects of clearcut age, scarification (mounding), herbicide treatment, and seedling stock type were investigated 5 years after planting. On fresh clearcuts, amounts of vegetation were negligible, whereas 2.1-3.7 Mg·ha-1 was found on 4-year-old and older clearcuts. Soil temperatures were about 10% higher in mounds than in undisturbed ground, while herbicide and clearcut age only marginally affected soil temperatures. Seedlings planted on old clearcuts showed significant reductions in growth due to interference from vegetation. Five years after planting, the reduction in growth corresponded to about 1 year's growth. Most of the interaction between seedlings and vegetation occurred during the first 2 years after planting. Thus, scarification was just as effective as repeated herbicide treatments in reducing competition from vegetation. Differences in periods of drought between years could largely explain variation in leading shoot length. However, leading shoot length was affected in the same way irrespective of vegetation control treatments. Five years after planting, the relative differences in diameter between bare-root and containerized seedlings were the same as at the time of planting.


Sign in / Sign up

Export Citation Format

Share Document