Model systems for the understanding of lignified plant cell wall formation

Author(s):  
B Cathala ◽  
C Rondeau-Mouro ◽  
D Lairez ◽  
F Bedos Belval ◽  
H Durand ◽  
...  
2020 ◽  
Vol 50 (2) ◽  
pp. 176-186
Author(s):  
Yi MAN ◽  
RuiLi LI ◽  
YuFen BU ◽  
Na SUN ◽  
YanPing JING ◽  
...  

2016 ◽  
pp. pp.00754.2016 ◽  
Author(s):  
Liwen Jiang ◽  
Hao Wang ◽  
Xiaohoang Zhuang ◽  
Xiangfeng Wang ◽  
Ho Yin Law ◽  
...  

2018 ◽  
Vol 130 (51) ◽  
pp. 16907-16913 ◽  
Author(s):  
Clemence Simon ◽  
Cedric Lion ◽  
Corentin Spriet ◽  
Fabien Baldacci‐Cresp ◽  
Simon Hawkins ◽  
...  

2010 ◽  
Vol 3 (5) ◽  
pp. 818-833 ◽  
Author(s):  
Xiaohong Zhu ◽  
Sivakumar Pattathil ◽  
Koushik Mazumder ◽  
Amanda Brehm ◽  
Michael G. Hahn ◽  
...  

2018 ◽  
Vol 57 (51) ◽  
pp. 16665-16671 ◽  
Author(s):  
Clemence Simon ◽  
Cedric Lion ◽  
Corentin Spriet ◽  
Fabien Baldacci‐Cresp ◽  
Simon Hawkins ◽  
...  

2015 ◽  
Vol 45 (6) ◽  
pp. 544-556 ◽  
Author(s):  
BaoCai ZHANG ◽  
YiHua ZHOU

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanli Liu ◽  
Linlong Ma ◽  
Dan Cao ◽  
Ziming Gong ◽  
Jing Fan ◽  
...  

Abstract Background C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis. Results A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response. Conclusion This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.


2020 ◽  
Author(s):  
yanli liu ◽  
Linlong Ma ◽  
Dan Cao ◽  
Ziming Gong ◽  
Jing Fan ◽  
...  

Abstract Background: Camellia sinensis is an important economic crop with fluoride over-accumulation in the leaves, which pose a serious threaten to human health due to its leave being used for making tea. Recently, our study found that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, CWPs identification and characterization were lacking up to now in C. sinensis. Herein, we aimed at characterizing cell wall proteome of C. sinensis leaves, to develop more CWPs related to stress response. A strategy of combined cell wall proteome and N-glycoproteome were employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material, afterwards all proteins were subjected to qualitative analysis via UPLC-MS/MS.Results: 501 and 195 CWPs were identified by cell wall proteomic and N-glycoproteomics profiling, respectively, with 118 CWPs being in common. Notably, N-glycoproteome is a feasible method for CWPs identification and consequently enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional group with most of them possibly being involved in the remodeling of cell wall structure. The second abundant group encompass mainly various proteases, being considered to be related to CWPs turnover and maturation. Oxidoreductases represent the third abundance with most of them especially Class III peroxidases being known to be implicated in defense response. As expected, identified CWPs emphasized on plant cell wall formation and defense response.Conclusion: This was the first large scale survey of CWPs by cell wall proteome and N-glycoproteome in C. sinensis. The results not only provides a database that will aid deep research on CWPs, but also improve the understanding underlying cell wall formation and defense response in this important economic specie.


Sign in / Sign up

Export Citation Format

Share Document