repeat proteins
Recently Published Documents


TOTAL DOCUMENTS

560
(FIVE YEARS 142)

H-INDEX

73
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Kyrah M Thumbadoo ◽  
Birger V Dieriks ◽  
Helen C Murray ◽  
Molly EV Swanson ◽  
Ji Hun Yoo ◽  
...  

Mutations in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD) characterised by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus, cerebellum, and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial ALS or FTD cases not caused by UBQLN2 mutations, particularly C9ORF72-linked cases. This makes the mechanistic role of ubiquilin 2 mutations and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 31 genotypically diverse ALS cases with or without FTD, including four cases with UBQLN2 mutations (resulting in p.P497H, p.P506S, and two cases with p.T487I). Using double-, triple-, and six-label fluorescent immunohistochemistry, we mapped the co-localisation of ubiquilin 2 with phosphorylated TDP-43 (pTDP-43), dipeptide repeat aggregates, and p62, in the hippocampus of controls (n=5), or ALS with or without FTD in sporadic (n=19), unknown familial (n=3), SOD1-linked (n=1), C9ORF72-linked (n=4), and UBQLN2-linked (n=4) cases. We differentiate between i) ubiquilin 2 aggregation together with, or driven by, pTDP-43 or dipeptide repeat proteins, and ii) ubiquilin 2 self-aggregation driven by UBQLN2 gene mutations. Together we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wildtype ubiquilin 2 in ALS with or without FTD, whereby mutant ubiquilin 2 is more prone than wildtype to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene mutations and to understand the mechanisms of UBQLN2-linked disease.


Author(s):  
Kohsuke Kanekura ◽  
Yuhei Hayamizu ◽  
Masahiko Kuroda

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have been thought as two distinct neurodegenerative diseases. However, recent genetic screening and careful investigations found the genetic and pathological overlap among these disorders. Hexanucleotide expansions in intron 1 of C9orf72 are a leading cause of familial ALS and familial FTD. These expansions facilitate the repeat-associated non-ATG initiated translation (RAN translation), producing five dipeptide repeat proteins (DRPs), including Arg-rich poly(PR: Pro-Arg) and poly-(GR: Gly-Arg) peptides. Arg is a positively charged, highly polar amino acid that facilitates interactions with anionic molecules such as nucleic acids and acidic amino acids via electrostatic forces and aromatic amino acids via cation-pi interaction, suggesting that Arg-rich DRPs underlie the pathophysiology of ALS via Arg-mediated molecular interactions. Arg-rich DRPs have also been reported to induce neurodegeneration in cellular and animal models via multiple mechanisms; however, it remains unclear why the Arg-rich DRPs exhibit such diverse toxic properties, because not all Arg-rich peptides are toxic. In this mini-review, we discuss the current understanding of the pathophysiology of Arg-rich C9orf72 DRPs and introduce recent findings on the role of Arg distribution as a determinant of the toxicity and its contribution to the pathogenesis of ALS.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012123
Author(s):  
A A Vronskaia ◽  
A D Mikushina ◽  
I E Eliseev

Abstract Tandem repeat proteins have composite structure and unique properties, which allow them to be used in multiple fields, such as soft photonics, drug delivery and textile industry. The recent discovery of squid ring teeth (SRT) proteins have expanded the existing repertoire of repetitive polypeptides. We chose previously unexplored squid B. magister for our research, isolated and analyzed a new protein forming its ring teeth and hooks, and amplified the corresponding gene. Finally, we used this new isolated SRT protein to fabricate transparent thin films and microspheres.


Author(s):  
Shuen-Fang Lo ◽  
Jolly Chatterjee ◽  
Akshaya K. Biswal ◽  
I.-Lun Liu ◽  
Yu-Pei Chang ◽  
...  

Abstract Key message Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. Abstract To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements. One of the targets is to generate a “Kranz-like” anatomy in leaves that includes decreased interveinal spacing close to that in C4 plant species. As C4 photosynthesis has evolved from C3 photosynthesis independently in multiple lineages, the genes required to facilitate C4 may already be present in the rice genome. The Taiwan Rice Insertional Mutants (TRIM) population offers the advantage of gain-of-function phenotype trapping, which accelerates the identification of rice gene function. In the present study, we screened the TRIM population to determine the extent to which genetic plasticity can alter vein density (VD) in rice. Close vein spacing mutant 1 (CVS1), identified from a VD screening of approximately 17,000 TRIM lines, conferred heritable high leaf VD. Increased vein number in CVS1 was confirmed to be associated with activated expression of two nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. Overexpression of the two NB-LRR genes individually in rice recapitulates the high VD phenotype, due mainly to reduced interveinal mesophyll cell (M cell) number, length, bulliform cell size and thus interveinal distance. Our studies demonstrate that the trait of high VD in rice can be achieved by elevated expression of NB-LRR proteins limited to no yield penalty.


2021 ◽  
Vol 12 ◽  
Author(s):  
Karla S. Macedo-Osorio ◽  
Agustino Martínez-Antonio ◽  
Jesús A. Badillo-Corona

Penta-, Tetra-, and Octo-tricopeptide repeat (PPR, TPR, and OPR) proteins are nucleus-encoded proteins composed of tandem repeats of 35, 34, and 38–40 amino acids, respectively. They form helix-turn-helix structures that interact with mRNA or other proteins and participate in RNA stabilization, processing, maturation, and act as translation enhancers of chloroplast and mitochondrial mRNAs. These helical repeat proteins are unevenly present in plants and algae. While PPR proteins are more abundant in plants than in algae, OPR proteins are more abundant in algae. In Arabidopsis, maize, and rice there have been 450, 661, and 477 PPR proteins identified, respectively, which contrasts with only 14 PPR proteins identified in Chlamydomonas reinhardtii. Likewise, more than 120 OPR proteins members have been predicted from the nuclear genome of C. reinhardtii and only one has been identified in Arabidopsis thaliana. Due to their abundance in land plants, PPR proteins have been largely characterized making it possible to elucidate their RNA-binding code. This has even allowed researchers to generate engineered PPR proteins with defined affinity to a particular target, which has served as the basis to develop tools for gene expression in biotechnological applications. However, fine elucidation of the helical repeat proteins code in Chlamydomonas is a pending task. In this review, we summarize the current knowledge on the role PPR, TPR, and OPR proteins play in chloroplast gene expression in the green algae C. reinhardtii, pointing to relevant similarities and differences with their counterparts in plants. We also recapitulate on how these proteins have been engineered and shown to serve as mRNA regulatory factors for biotechnological applications in plants and how this could be used as a starting point for applications in algae.


2021 ◽  
pp. 101403
Author(s):  
Johannes Schilling ◽  
Christian Jost ◽  
Ioana Mariuca Ilie ◽  
Joachim Schnabl ◽  
Oralea Buechi ◽  
...  

2021 ◽  
Vol 6 (4) ◽  
pp. 344
Author(s):  
Cecep Suhandi

Kanker payudara menjadi salah satu penyebab utama kematian akibat kanker pada populasi wanita di dunia. Tingginya kematian yang terjadi berkorelasi dengan rendahnya efektivitas terapi yang diberikan. Melalui sistem penghantaran obat tertarget pada pengobatan kanker payudara menjadi alternatif baru dalam upaya peningkatan efektivitas terapi. Tinjauan sistematis ini bertujuan untuk menelusuri dan mengumpulkan berbagai data yang memuat potensi terkait perkembangan sistem penghantaran obat tertarget EGFR pada pengobatan kanker payudara. Penelusuran data dilakukan menggunakan kata kunci "((Breast Cancer) AND (Targeted Drug Delivery) AND (Epidermal Growth Factor Receptor OR EGFR)) NOT Review” pada basis data Scopus, ScienceDirect, dan PubMed Central. Berdasarkan telaah artikel, diketahui bahwa sistem penghantaran tertarget EGFR pada kanker payudara saat ini dikembangkan dalam bentuk konjugat antibodi-obat, nanopartikel aptamer-protamine-siRNA (APR), konjugat affibodi-hibrid DNA, antibodi biparatopik-bispesifik, konjugat sel T-Designed Ankyrin Repeat Proteins (DAR-Pins), konjugat multikomponen dalam bentuk dendrimer PAMAM, dan chimera bivalen aptamer-siRNA. Selain itu, target spesifik yang banyak digunakan dalam metode terkini meliputi EGFR natural, HER2, HER3, asam folat, serta gen ErbB3. Perkembangan ini menunjukkan besarnya potensi terapi berbasis penghantaran tertarget EGFR dalam pengobatan kanker payudara.   


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jazmine P. Hallinan ◽  
Lindsey A. Doyle ◽  
Betty W. Shen ◽  
Mesfin M. Gewe ◽  
Brittany Takushi ◽  
...  

AbstractCircular tandem repeat proteins (‘cTRPs’) are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joanne L. Sharpe ◽  
Nikki S. Harper ◽  
Duncan R. Garner ◽  
Ryan J. H. West

An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1285
Author(s):  
Lukas Becker ◽  
Jasleen Singh Badwal ◽  
Fabian Brandl ◽  
Wouter P. R. Verdurmen ◽  
Andreas Plückthun

Anthrax toxin has evolved to translocate its toxic cargo proteins to the cytosol of cells carrying its cognate receptor. Cargo molecules need to unfold to penetrate the narrow pore formed by its membrane-spanning subunit, protective antigen (PA). Various alternative cargo molecules have previously been tested, with some showing only limited translocation efficiency, and it may be assumed that these were too stable to be unfolded before passing through the anthrax pore. In this study, we systematically and quantitatively analyzed the correlation between the translocation of various designed ankyrin repeat proteins (DARPins) and their different sizes and thermodynamic stabilities. To measure cytosolic uptake, we used biotinylation of the cargo by cytosolic BirA, and we measured cargo equilibrium stability via denaturant-induced unfolding, monitored by circular dichroism (CD). Most of the tested DARPin cargoes, including target-binding ones, were translocated to the cytosol. Those DARPins, which remained trapped in the endosome, were confirmed by CD to show a high equilibrium stability. We could pinpoint a stability threshold up to which cargo DARPins still get translocated to the cytosol. These experiments have outlined the requirements for translocatable binding proteins, relevant stability measurements to assess translocatable candidates, and guidelines to further engineer this property if needed.


Sign in / Sign up

Export Citation Format

Share Document