random texture
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Sheng Li ◽  
Biao Cai ◽  
Ranxi Duan ◽  
Lei Tang ◽  
Zihan Song ◽  
...  

AbstractIsotropy in microstructure and mechanical properties remains a challenge for laser powder bed fusion (LPBF) processed materials due to the epitaxial growth and rapid cooling in LPBF. In this study, a high-strength TiB2/Al-Cu composite with random texture was successfully fabricated by laser powder bed fusion (LPBF) using pre-doped TiB2/Al-Cu composite powder. A series of advanced characterisation techniques, including synchrotron X-ray tomography, correlative focussed ion beam–scanning electron microscopy (FIB-SEM), scanning transmission electron microscopy (STEM), and synchrotron in situ X-ray diffraction, were applied to investigate the defects and microstructure of the as-fabricated TiB2/Al-Cu composite across multiple length scales. The study showed ultra-fine grains with an average grain size of about 0.86 μm, and a random texture was formed in the as-fabricated condition due to rapid solidification and the TiB2 particles promoting heterogeneous nucleation. The yield strength and total elongation of the as-fabricated composite were 317 MPa and 10%, respectively. The contributions of fine grains, solid solutions, dislocations, particles, and Guinier–Preston (GP) zones were calculated. Failure was found to be initiated from the largest lack-of-fusion pore, as revealed by in situ synchrotron tomography during tensile loading. In situ synchrotron diffraction was used to characterise the lattice strain evolution during tensile loading, providing important data for the development of crystal-plasticity models.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5834
Author(s):  
Chi Zhang ◽  
Laszlo S. Toth

During severe plastic deformation (SPD), there is usually extended grain fragmentation, associated with the formation of a crystallographic texture. The effect of texture evolution is, however, coarsening in grain size, as neighbor grains might coalesce into one grain by approaching the same ideal orientation. This work investigates the texture-induced grain coarsening effect in face-centered cubic polycrystals during simple shear, in 3D topology. The 3D polycrystal aggregate was constructed using a cellular automaton model with periodic boundary conditions. The grains constituting the polycrystal were assigned to orientations, which were updated using the Taylor polycrystal plasticity approach. At the end of plastic straining, a grain detection procedure (similar to the one in electron backscatter diffraction, but in 3D) was applied to detect if the orientation difference between neighboring grains decreased below a small critical value (5°). Three types of initial textures were considered in the simulations: shear texture, random texture, and cube-type texture. The most affected case was the further shearing of an initially already shear texture: nearly 40% of the initial volume was concerned by the coalescence effect at a shear strain of 4. The coarsening was less in the initial random texture (~30%) and the smallest in the cube-type texture (~20%). The number of neighboring grains coalescing into one grain went up to 12. It is concluded that the texture-induced coarsening effect in SPD processing cannot be ignored and should be taken into account in the grain fragmentation process.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 134318-134329 ◽  
Author(s):  
Haiyong Chen ◽  
Jiali Liu ◽  
Shuang Wang ◽  
Kun Liu

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2481 ◽  
Author(s):  
Yangcheng Hu ◽  
Zhiyi Liu ◽  
Qi Zhao ◽  
Song Bai ◽  
Fei Liu

P-texture effect on the fatigue crack propagation (FCP) resistance in an Al-Cu-Mg alloy containing a small amount of Ag, is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron back scattering diffraction (EBSD). Results shows that the high intensity P-texture sheet has lower σ0.2/σb, lower FCP rate and higher damage tolerance than random texture sheet. Fracture analysis indicates that the striations spacing of high intensity P-texture sheet is much smaller than that of random texture sheet and it has a rougher fatigue fracture surface, which causes a significant roughness induced crack closure (RICC) effect. The calculation results manifest that high intensity P-texture sheet possesses a higher crack closure level reaching 0.73 as compared to random texture sheet (only 0.25). The statistical analysis results reveal the P-grains have large twist angle of 105–170° and tilt angle of 5–60° with neighboring grains, which is similar to Goss-grains. This is the fundamental reason that P-texture sheet has the same FCP resistance and induces fatigue crack deflection as Goss-texture sheet. Additionally, the most {111} slipping planes of P-grains are distributed in the range of 30–50° deviating from transverse direction of the sheet. This results in more {111} slipping planes to participate in cyclic plastic deformation, which is beneficial to reduce fatigue damage accumulation and improve the damage tolerance of Al-Cu-Mg-Ag alloy.


2018 ◽  
Vol 54 (3) ◽  
pp. 250-255
Author(s):  
G. I. Gromilin ◽  
V. P. Kosykh ◽  
B. N. Drazhnikov ◽  
K. V. Kozlov ◽  
V. N. Vasil’ev

2017 ◽  
Vol 747 ◽  
pp. 3-10 ◽  
Author(s):  
Daniele Baraldi ◽  
Antonella Cecchi

A discrete model with rigid blocks and elastic-plastic interfaces is adopted for studying the collapse behavior of in-plane loaded masonry panels with random texture. An existing random discrete model, originally developed in the elastic field, is here extended to the field of material nonlinearity by adopting a Mohr-Coulomb yield criterion for restraining actions at joint level. The resulting model turns out to be simple and effective in determining collapse loads and mechanisms of rectangular masonry panels, also accounting for a further perturbation parameter able to vary the height of each course of blocks into the masonry panel. The collapse loads turn out to be slightly smaller than those typical of regular assemblages, whereas mechanisms turn out to be influenced by local arrangement and size of blocks.


Sign in / Sign up

Export Citation Format

Share Document