scholarly journals Defendants with intellectual disability and autism spectrum conditions: the perspective of clinicians working across three jurisdictions

Author(s):  
Jane McCarthy ◽  
Eddie Chaplin ◽  
Susan Hayes ◽  
Erik Søndenaa ◽  
Verity Chester ◽  
...  
2006 ◽  
Vol 48 (12) ◽  
pp. 1007 ◽  
Author(s):  
Rebecca C Knickmeyer ◽  
Sally Wheelwright ◽  
Rosa Hoekstra ◽  
Simon Baron-Cohen

2018 ◽  
Author(s):  
Matthew J. Bolton ◽  
William G. Blumberg ◽  
Lara K. Ault ◽  
H. Michael Mogil ◽  
Stacie H. Hanes

Weather is important to all people, including vulnerable populations (those whose circumstances include cognitive processing, hearing, or vision differences, physical disability, homelessness, and other scenarios and factors). Autism spectrum conditions (ASC) affect information-processing and areas of neurological functioning that potentially inhibit the reception of hazardous weather information, and is of particular concern for weather messengers. People on the autism spectrum tend to score highly in tests of systemizing, a psychological process that heavily entails attention to detail and revolves around the creation of logical rules to explain things that occur in the world. This article reports the results of three preliminary studies examining weather salience–psychological attention to weather–and its potential relationships with systemizing in autistic people. Initial findings suggest that enhanced weather salience exists among autistic individuals compared to those without the condition, and that this may be related to systemizing. These findings reveal some possible strategies for communicating weather to autistic populations and motivate future work on a conceptual model that blends systemizing and chaos theory to better understand weather salience.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwaipayan Adhya ◽  
George Chennell ◽  
James A. Crowe ◽  
Eva P. Valencia-Alarcón ◽  
James Seyforth ◽  
...  

Abstract Background The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. Results Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. Conclusion We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.


Author(s):  
Meena Balasubramanian ◽  
Alexander J. M. Dingemans ◽  
Shadi Albaba ◽  
Ruth Richardson ◽  
Thabo M. Yates ◽  
...  

AbstractWitteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10–12.


Sign in / Sign up

Export Citation Format

Share Document