scholarly journals Evaluation of CO2 emission reduction effect using in-situ production of precast concrete components

2020 ◽  
Vol 19 (2) ◽  
pp. 176-186 ◽  
Author(s):  
Jeeyoung Lim ◽  
Sunkuk Kim
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Youngju Na ◽  
Bumjin Han ◽  
Seunghyun Son

Precast concrete (PC) method of construction is preferred for excellence in the reduction of construction period, lightweight, and durability and for PC member to be mostly transported to a site after its production in the in-plant production because the in situ production of the PC member is negatively perceived because of the limitation of space or production process being complex and difficult. However, if the PC member is produced on site and installed, it is possible to reduce the carbon dioxide emissions that are generated during shipping and loading and unloading, which are indirectly required for in-plant production. Carbon dioxide emission reduction effect due to the difference between the in situ production and in-plant production process of the PC member was confirmed by the existing studies, but the study of the carbon dioxide reduction effect according to various production environments of the in-plant production has not been performed. Therefore, the purpose of this study is to analyze the CO2 emission reduction effect of the PC member produced in site according to the in-plant production environment. As a result, it was found that when PC members were produced on site, there was an effect of reducing CO2 emissions by an average of 25.64% compared to factory production. In future, the results of this study will be used as basic data for establishing a CO2 emission reduction plan at construction sites.


2020 ◽  
Vol 12 (19) ◽  
pp. 8202
Author(s):  
Jeeyoung Lim ◽  
Joseph J. Kim

CO2 emissions account for 80% of greenhouse gases, which lead to the largest contributions to climate change. As the problem of CO2 emission becomes more and more prominent, research on sustainable technologies to reduce CO2 emission among environmental loads is continuously being conducted. In-situ production of precast concrete members has advantages over in-plant production in reducing costs, securing equal or enhanced quality under equal conditions, and reducing CO2 emission. When applying in-situ production to real projects, it is vital to calculate the optimal quantity. This paper presents a dynamic optimization model for estimating in-situ production quantity of precast concrete members subjected to environmental loads. After defining various factors and deriving the objective function, an optimization model is developed using system dynamics. As a result of optimizing the quantity by applying it to the case project, it was confirmed that the optimal case can save 7557 t-CO2 in CO2 emissions and 6,966,000 USD in cost, which resulted in 14.58% and 10.53% for environmental loads and cost, respectively. The model developed here can be used to calculate the quantity of in-situ production quickly and easily in consideration of dynamically changing field conditions.


Sign in / Sign up

Export Citation Format

Share Document