in situ production
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 47)

H-INDEX

38
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4800
Author(s):  
Chun-Liang Yeh ◽  
Min-Chia Chen

Combustion synthesis involving metallothermic reduction of MoO3 by dual reductants, Mg and Al, to enhance the reaction exothermicity was applied for the in situ production of Mo3Si–, Mo5Si3− and MoSi2–MgAl2O4 composites with a broad compositional range. Reduction of MoO3 by Mg and Al is highly exothermic and produces MgO and Al2O3 as precursors of MgAl2O4. Molybdenum silicides are synthesized from the reactions of Si with both reduced and elemental Mo. Experimental evidence indicated that the reaction proceeded as self-propagating high-temperature synthesis (SHS) and the increase in silicide content weakened the exothermicity of the overall reaction, and therefore, lowered combustion front temperature and velocity. The XRD analysis indicated that Mo3Si–, Mo5Si3– and MoSi2–MgAl2O4 composites were well produced with only trivial amounts of secondary silicides. Based on SEM and EDS examinations, the morphology of synthesized composites exhibited dense and connecting MgAl2O4 crystals and micro-sized silicide particles, which were distributed over or embedded in the large MgAl2O4 crystals.


Author(s):  
Naiara Elisa Kreling ◽  
Viviane Simon ◽  
Victória Dutra Fagundes ◽  
Antônio Thomé ◽  
Luciane Maria Colla

Sign in / Sign up

Export Citation Format

Share Document