scholarly journals Harvesting Renewable Energies through Innovative Kinetic Honeycomb Architectural Facades: The Mathematical & CFD Modeling for Wind Turbine Design Optimization

Author(s):  
Danny Santoso Mintorogo ◽  
Aris Budhiyanto ◽  
Feny Elsiana ◽  
Fandi D. Suprianto ◽  
Sutrisno
2014 ◽  
Vol 571-572 ◽  
pp. 1083-1086
Author(s):  
Qiu Yun Mo ◽  
Fei Deng ◽  
Shuai Shuai Li ◽  
Ke Yan Zhang

Multidisciplinary design optimization (MDO) represents the development direction of complex products design theory and method, it shows a huge advantage in solving complex optimization problems in engineering applications, for example product design. This paper briefly analyzes some existing problems of small vertical wind turbine, and puts forward using the theory of MDO in small vertical wind turbine structural optimization. Then,the paper analyzes and points out the key technology of using MDO theory to optimize small vertical wind turbine, and provides a new train of thought for further in-depth study of small vertical wind turbine to improve the overall performance of the small vertical wind turbine products.


Author(s):  
Marco Caboni ◽  
M. Sergio Campobasso ◽  
Edmondo Minisci

Wind turbine design optimization is typically performed considering a given wind distribution. However, turbines so designed often end up being used at sites characterized by different wind distributions, and this results in significant performance penalties. This paper presents a probabilistic integrated multidisciplinary approach to the design optimization of multi-megawatt wind turbines accounting for the stochastic variability of the mean wind speed. The presented technology is applied to the design of a 5 MW rotor to be used at sites of wind power class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing mean and standard deviation of the levelized cost of energy. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to structural and aeroelastic constraints. The probabilistically designed turbine achieves a more favorable probabilistic performance than the initial baseline turbine. The presented probabilistic design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity.


Author(s):  
Marco Caboni ◽  
M. Sergio Campobasso ◽  
Edmondo Minisci

Wind turbine design optimization is typically performed considering a given wind distribution. However, turbines so designed often end up being used at sites characterized by different wind distributions, resulting in significant performance penalties. This paper presents a probabilistic integrated multidisciplinary approach to the design optimization of multimegawatt wind turbines accounting for the stochastic variability of the mean wind speed. The presented technology is applied to the design of a 5 MW rotor for use at sites of wind power class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing mean and standard deviation of the levelized cost of energy (LCOE). Airfoil shapes, spanwise distributions of blade chord and twist, blade internal structural layup, and rotor speed are optimized concurrently, subject to structural and aeroelastic constraints. The probabilistically designed turbine achieves a more favorable probabilistic performance than the initial baseline turbine. The presented probabilistic design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity.


2012 ◽  
Vol 55 (3-4) ◽  
pp. 396-404 ◽  
Author(s):  
Tugrul U. Daim ◽  
Elvan Bayraktaroglu ◽  
Judith Estep ◽  
Dong Joon Lim ◽  
Jubin Upadhyay ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document