Improved Explicit Integration Algorithms for Structural Dynamic Analysis with Unconditional Stability and Controllable Numerical Dissipation

2017 ◽  
Vol 23 (5) ◽  
pp. 771-792 ◽  
Author(s):  
Chinmoy Kolay ◽  
James M. Ricles
2018 ◽  
Vol 18 (03) ◽  
pp. 1850044 ◽  
Author(s):  
Xiaoqiong Du ◽  
Dixiong Yang ◽  
Jilei Zhou ◽  
Xiaoliang Yan ◽  
Yongliang Zhao ◽  
...  

This paper presents a new family of explicit time integration algorithms with controllable numerical dissipation for structural dynamic problems by utilizing the discrete control theory. Firstly, the equilibrium equation of the implicit Yu-[Formula: see text] algorithm is adopted, and the recursive formulas of velocity and displacement for the explicit CR algorithm are used in the algorithms. Then, the transfer function and characteristic equation of the algorithms with integration coefficients are obtained by the [Formula: see text] transformation. Furthermore, their integration coefficients are derived according to the poles condition. It was indicated that the proposed algorithms possess the advantages of second-order accuracy, self-starting, and unconditional stability for linear systems and nonlinear systems with softening stiffness. The numerical dissipation of the algorithms is controlled by the spectral radius at infinity [Formula: see text]. It was also shown that the proposed algorithms have the same poles as the Yu-[Formula: see text] algorithm, and thus the same numerical properties. Compared with the implicit Yu-[Formula: see text] algorithm, the proposed algorithms are explicit in terms of both the displacement and velocity formulas. Finally, the effectiveness of the proposed algorithms in reducing the undesired participation of higher modes for solving the dynamic responses of linear and nonlinear systems has been demonstrated.


2021 ◽  
Vol 11 (24) ◽  
pp. 12109
Author(s):  
Veerarajan Selvakumar ◽  
Shuenn-Yih Chang

Although many families of integration methods have been successfully developed with desired numerical properties, such as second order accuracy, unconditional stability and numerical dissipation, they are generally implicit methods. Thus, an iterative procedure is often involved for each time step in conducting time integration. Many computational efforts will be consumed by implicit methods when compared to explicit methods. In general, the structure-dependent integration methods (SDIMs) are very computationally efficient for solving a general structural dynamic problem. A new family of SDIM is proposed. It exhibits the desired numerical properties of second order accuracy, unconditional stability, explicit formulation and no overshoot. The numerical properties are controlled by a single free parameter. The proposed family method generally has no adverse disadvantage of unusual overshoot in high frequency transient responses that have been found in the currently available implicit integration methods, such as the WBZ-α method, HHT-α method and generalized-α method. Although this family method has unconditional stability for the linear elastic and stiffness softening systems, it becomes conditionally stable for stiffness hardening systems. This can be controlled by a stability amplification factor and its unconditional stability is successfully extended to stiffness hardening systems. The computational efficiency of the proposed method proves that engineers can do the accurate nonlinear analysis very quickly.


Sign in / Sign up

Export Citation Format

Share Document