Direct Method for Generating Floor Response Spectra considering Soil–Structure Interaction

Author(s):  
Wei Jiang ◽  
Yang Zhou ◽  
Wei-Chau Xie ◽  
Mahesh D. Pandey
Author(s):  
Young-Sun Jang ◽  
Kwang-Ho Joo ◽  
Chong-Hak Kim

The SSI (Soil-Structure Interaction) analyses are being performed for the APR1400 (Advanced Power Reactor 1400MWe, Old name - KNGR ; Korean Next Generation Reactor) design, because the APR1400 is developed as a Standard Nuclear Power Plant concept enveloping suitable soil conditions. For the SSI analyses, SASSI program which adopts the Flexible Volume Method is used. In the SSI analyses, there can be uncertainties by Bond and De-bond problem between the structure and lateral soil elements. According to ASCE Standard 4, one method to address this concern is to assume no connectivity between structure and lateral soil over the upper half of the embedment of 20ft (6m), whichever is less. This study is performed as a part of the parametric analyses for the APR1400 seismic analyses to address the concern of the potential embedment effect on the in-structure response spectra due to connectivity between structure and lateral soil. In this study, 4 model cases are analyzed to check the potential embedment effect — Full connection, 20ft no connectivity which is defined as a minimum De-bond depth of the soil in ASCE Standard 4 and 26.5ft no connectivity between structure and lateral soil over the upper half of the embedment. Last one is full no connection for only reference. The in-structure response spectra are compared with the response spectra without considering the embedment effect.


Author(s):  
David K. Nakaki ◽  
Philip S. Hashimoto ◽  
James J. Johnson ◽  
Yahya Bayraktarli ◽  
Olivier Zuchuat

Probabilistic seismic soil-structure interaction (SSI) analysis was performed for the Mu¨hleberg Nuclear Power Plant Reactor and SUSAN Buildings in support of the seismic probabilistic saftety assessment of the plant. An efficient hybrid method, employing computer programs SASSI2000 and CLASSI presented in a companion paper, was used in this analysis. The method takes advantage of the capability of SASSI2000 to analyze embedded structures with irregular geometry and the computational efficiency of CLASSI to rapidly perform the SSI response analysis of large structure models. Fixed base finite element models of the buildings were first developed from which the structure geometry, nodal masses, natural frequencies, and mode shapes were extracted. The structure embedments were modeled using SASSI2000. Impedance functions and scattering vectors were calculated by imposing rigid body constraints to the embedded foundation. The fixed base structure dynamic properties and the foundation impedances and scattering functions were input to CLASSI to perform the response analysis. The probabilistic analysis was performed following the Latin Hypercube Simulation (LHS) approach documented in NUREG/CR-2015. Variables defined by probability distributions were sampled according to a stratified sampling approach. The combination of the parameters for each simulation was determined by Latin Hypercube experimental design. Variables in the LHS included the earthquake ground acceleration time histories, structure stiffness and damping, and soil stiffness and damping. Thirty response simulations were performed using CLASSI in which the variable values were randomly selected. The use of CLASSI has the advantage that the response analysis simulations can be executed in a fraction of the time that would be required with SASSI2000 alone. For each simulation, in-structure response spectra (ISRS) were calculated at selected locations in the buildings. Probabilistic distributions, described by the median and 84th percentile response spectra, were calculated from the thirty simulations. The probabilistic ISRS are subsequently used in the seismic fragility evaluations of selected essential equipment.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
B. R. Jayalekshmi ◽  
S. V. Jisha ◽  
R. Shivashankar ◽  
S. Soorya Narayana

This paper presents numerical analysis of soil-structure-interaction (SSI) of tall reinforced concrete chimneys with piled raft foundation subjected to El Centro ground motion (1940) using finite element method. Seismic analysis in time domain was performed on the basis of direct method of SSI on the three-dimensional SSI system. The chimney, foundation, and soil were assumed to be linearly elastic in the analysis. The stress resultants and settlement of raft of piled raft foundation were evaluated under different soil properties and different geometrical features of raft and chimney. Soil properties were selected based on the shear wave velocity corresponding to sand in the loose to dense range. Chimneys with different elevations of 100 m, 200 m, and 400 m were taken with a ratio of height to base diameter of chimney of 17. Raft of different thickness was considered to evaluate the effect of stiffness of foundation. Results were analysed to assess the significance of characteristic of the ground motion. It is found that the response in the raft depends on the different parameters of chimney, foundation, and soil. It is also found that the higher modes of SSI system are significant in determining the response in the raft.


2019 ◽  
Vol 18 (3) ◽  
pp. 907-924 ◽  
Author(s):  
Krystyna Kuzniar ◽  
Tadeusz Tatara

Abstract Mining-related seismicity is a significant problem in regions with the exploitation in underground mines. Despite the fact that mining tremors result from human activity and are classified as so-called paraseismic shocks, as with earthquakes, they are random events. Moreover, these rockbursts could cause significant damage to surface structures, including buildings. This paper deals with the analysis of experimentally obtained results in terms of the differences between the mine-induced vibrations described by the response spectra from the free-field near a given building and the simultaneously recorded vibrations in the building foundations. The influences of epicentral distance, mining tremor energy and the value of peak ground acceleration on the curves of free-field—foundation response spectra ratio were studied. The impact of the type of building on the transmission of response spectra from the free-field vibrations to the building foundations was also analysed for three types of apartment buildings (low-rise, medium-rise, high-rise). The usefulness of the approximate models of the phenomenon of soil-structure interaction during earthquakes proposed in the literature is also estimated in this paper in specific instances of mining tremors. Furthermore, the study presents original, simple, empirical models for the evaluation of the differences in the response spectra originating from free-field and building foundation vibrations in the mining region.


Author(s):  
Yugang Sun ◽  
Shujian Cheng ◽  
Honghui Ge ◽  
Xiaowen Wang ◽  
Fang Yuan ◽  
...  

Based on the shock damage propagation distances and the median fragility limit of the equipments, the NEI 07–13 employs the shock damage rules for determining the potential for affecting safe shutdown and fuel cooling equipments. However, the NEI 07–13 does not provide more detailed guidance for performing the shock damage assessments, because both the shock damage distances and the methodology for developing the median fragility limit are not provided in NEI 07–13. This paper discussed methodology developed for performing simplified assessments for shock effects considering the material nonlinearity of the impact zone and the soil-structure interaction. Three different models (i.e., linear model, nonlinear mode, and SSI model) were developed to calculate the in-structure shock response. The results of the linear model show the shock response due to aircraft impact would completely propagate from the center of initial impact zone and then along a structure pathway (e.g. wall, floor, basemat) to the in-structure without any energy dissipation. As a result, the in-structure shock response spectra are considerably higher than the spectra associated with the design-basis earthquake in the high frequency range. In order to reduce the shock effects on the in-structure safety-related systems and equipments, the material nonlinearity of the impact zone and the soil-structure interaction were incorporated in the dynamic analysis. The numerical results show that both the material nonlinearity and the soil-structure interaction would obviously absorb the energy of the shock waves, so the in-structure shock response spectra were reduced due to these two factors. Finally, the representative shock response spectra were compared with those used in the seismic margin assessment in order to assess specific equipment survival.


2011 ◽  
Vol 255-260 ◽  
pp. 2891-2897
Author(s):  
Ming Hui Lee

This paper describes a numerical algorithm to determine the responses of the soil-structure interaction system due to known ground motion acceleration. A ground motion acceleration of known magnitude was suddenly applied to the soil-structure interaction system by direct method and then utilized this displacement to estimate others relative displacements by a Kalman filter technique. In order to examine the accuracy of the proposed method, the difference material soil-structure system is subjected to the actual ground motion acceleration. The results show that this method has the advantages of stability and accuracy.


Sign in / Sign up

Export Citation Format

Share Document