Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton

2012 ◽  
Vol 26 (7) ◽  
pp. 1251-1280 ◽  
Author(s):  
Roger White ◽  
Inge Uljee ◽  
Guy Engelen
2020 ◽  
Author(s):  
Calum Brown ◽  
Ian Holman ◽  
Mark Rounsevell

Abstract. Land use models operating at regional to global scales are almost exclusively based on the single paradigm of economic optimisation. Models based on different paradigms are known to produce very different results, but these are not always equivalent or attributable to particular assumptions. In this study, we compare two pan-European land use models that are based on the same integrated modelling framework and utilise the same climatic and socio-economic scenarios, but which adopt fundamentally different model paradigms. One of these is a constrained optimising economic-equilibrium model and the other is a stochastic agent-based model. We run both models for a range of scenario combinations and compare their projections of spatial and aggregate land use change and ecosystem service supply. We find that the agent-based model projects more multifunctional and heterogeneous landscapes in most scenarios, providing a wider range of ecosystem services at landscape scales, as agents make individual, time-dependent decisions that reflect economic and non-economic motivations. This tendency also results in food shortages under certain scenario conditions. The optimisation model, in contrast, maintains food supply through intensification of agricultural production in the most profitable areas, sometimes at the expense of active management in large, contiguous parts of Europe. We relate the principal differences observed to underlying model assumptions, and hypothesise that optimisation may be appropriate in scenarios that allow for coherent political and economic control of land systems, but not in scenarios where economic and other scenario conditions prevent the normal functioning of price signals and responses. In these circumstances, agent-based modelling allows explicit consideration of behavioural processes, but in doing so provides a highly flexible account of land system development that is harder to link to underlying assumptions. We suggest that structured comparisons of parallel, transparent but paradigmatically distinct models are an important method for better understanding the potential scope and uncertainties of future land use change.


2009 ◽  
Vol 24 (12) ◽  
pp. 1522-1528 ◽  
Author(s):  
Angelo Doglioni ◽  
Francesca Primativo ◽  
Daniele Laucelli ◽  
Valeria Monno ◽  
Soon-Thiam Khu ◽  
...  

2013 ◽  
Vol 41 (2) ◽  
pp. 97-109 ◽  
Author(s):  
JANET FRANKLIN ◽  
HELEN M. REGAN ◽  
ALEXANDRA D. SYPHARD

SUMMARYConservation managers and policy makers require models that can rank the impacts of multiple, interacting threats on biodiversity so that actions can be prioritized. An integrated modelling framework was used to predict the viability of plant populations for five species in southern California's Mediterranean-type ecosystem. The framework integrates forecasts of land-use change from an urban growth model with projections of future climatically-suitable habitat from climate and species distribution models, which are linked to a stochastic population model. The population model incorporates the effects of disturbance regimes and management actions on population viability. This framework: (1) ranks threats by their relative and cumulative impacts on population viability, such as land-use change, climate change, altered disturbance regimes or invasive species, and (2) ranks management responses in terms of their effectiveness for land protection, assisted dispersal, fire management and invasive species control. Too-frequent fire was often the top threat for the species studied, thus fire reduction was ranked the most important management option. Projected changes in suitable habitat as a result of climate change were generally large, but varied across species and climate scenarios; urban development could exacerbate loss of suitable habitat.


2011 ◽  
Vol 222 (20-22) ◽  
pp. 3761-3772 ◽  
Author(s):  
DongJie Guan ◽  
HaiFeng Li ◽  
Takuro Inohae ◽  
Weici Su ◽  
Tadashi Nagaie ◽  
...  

Author(s):  
Peter H. Verburg ◽  
Jan Peter Lesschen ◽  
Eric Koomen ◽  
Marta Pérez-Soba

This chapter presents an integrated modelling approach for assessing land use changes and its effects on biodiversity. A modelling framework consisting of a macro-economic model, a land use change model, and biodiversity indicator models is described and illustrated with a scenario study for the European Union. A reference scenario is compared to a scenario in which a number of possible policies for conservation and protection of biodiversity are assumed to have been implemented. The results are evaluated by an indicator of the habitat quality for biodiversity and an indicator of landscape connectivity. The results illustrate that land use change has spatially diverse impacts on biodiversity. The effectiveness of the assumed policies is region and context dependent. The modelling framework can thus provide ex-ante assessments of policies and identify critical regions for biodiversity conservation and assist in targeting policies and incentives to protect biodiversity in vulnerable areas.


2014 ◽  
Vol 53 ◽  
pp. 121-136 ◽  
Author(s):  
Judith A. Verstegen ◽  
Derek Karssenberg ◽  
Floor van der Hilst ◽  
André P.C. Faaij

2014 ◽  
Vol 11 (9) ◽  
pp. 10319-10364 ◽  
Author(s):  
M. Pulido-Velazquez ◽  
S. Peña-Haro ◽  
A. Garcia-Prats ◽  
A. F. Mocholi-Almudever ◽  
L. Henriquez-Dole ◽  
...  

Abstract. Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation, as various and complex interactions in the hydrological cycle take part. Land-use and land-cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands (global change). Changes in future climate and land uses will alter the hydrologic cycles and subsequently impact the quantity and quality of regional water systems. Predicting the behavior of recharge and discharge conditions under future climatic and land use changes is essential for integrated water management and adaptation. In the Mancha Oriental system in Spain, in the last decades the transformation from dry to irrigated lands has led to a significant drop of the groundwater table in one of the largest groundwater bodies in Spain, with the consequent effect on stream-aquifer interaction in the connected Jucar River. Streamflow depletion is compromising the related ecosystems and the supply to the downstream demands, provoking a complex management issue. The intense use of fertilizer in agriculture is also leading to locally high groundwater nitrate concentrations. Understanding the spatial and temporal distribution of water availability and water quality is essential for a proper management of the system. In this paper we analyze the potential impact of climate and land use change in the system by using an integrated modelling framework consisting of the sequentially coupling of a watershed agriculturally-based hydrological model (SWAT) with the ground-water model MODFLOW and mass-transport model MT3D. SWAT model outputs (mainly groundwater recharge and pumping, considering new irrigation needs under changing ET and precipitation) are used as MODFLOW inputs to simulate changes in groundwater flow and storage and impacts on stream-aquifer interaction. SWAT and MODFLOW outputs (nitrate loads from SWAT, groundwater velocity field from MODFLOW) are used as MT3D inputs for assessing the fate and transport of nitrate leached from the topsoil. Results on river discharge, crop yields, groundwater levels and groundwater nitrate concentrations obtained from simulation fit well to the observed values. Three climate change scenarios have been considered, corresponding to 3 different GCMs for emission scenario A1B, covering the control period, and short, medium and long-term future periods. A multi-temporal analysis of LULC change was carried out, helped by the study of historical trends by remote sensing images and key driving forces to explain LULC transitions. Markov chains and European scenarios and projections have been used to quantify trends in the future. The cellular automata technique was applied for stochastic modeling future LULC maps. The results show the sensitivity of groundwater quantity and quality (nitrate pollution) to climate and land use changes, and the need to implement adaptation measures in order to prevent further groundwater level declines and increasing nitrate concentrations. The sequential modelling chain has been proved to be a valuable assessment and management tool for supporting the development of sustainable management strategies.


Sign in / Sign up

Export Citation Format

Share Document