Leveraging clustering validation index for detecting ‘stops’ in spatial trajectory data: a semi-automatic approach

2020 ◽  
pp. 1-21
Author(s):  
Mainak Bandyopadhyay
Author(s):  
Yuxuan Liang ◽  
Kun Ouyang ◽  
Hanshu Yan ◽  
Yiwei Wang ◽  
Zekun Tong ◽  
...  

Recent advances in location-acquisition techniques have generated massive spatial trajectory data. Recurrent Neural Networks (RNNs) are modern tools for modeling such trajectory data. After revisiting RNN-based methods for trajectory modeling, we expose two common critical drawbacks in the existing uses. First, RNNs are discrete-time models that only update the hidden states upon the arrival of new observations, which makes them an awkward fit for learning real-world trajectories with continuous-time dynamics. Second, real-world trajectories are never perfectly accurate due to unexpected sensor noise. Most RNN-based approaches are deterministic and thereby vulnerable to such noise. To tackle these challenges, we devise a novel method entitled TrajODE for more natural modeling of trajectories. It combines the continuous-time characteristic of Neural Ordinary Differential Equations (ODE) with the robustness of stochastic latent spaces. Extensive experiments on the task of trajectory classification demonstrate the superiority of our framework against the RNN counterparts.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zuyao Zhang ◽  
Li Tang ◽  
Yifeng Wang ◽  
Xuejun Zhang

Informatica ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Pengfei HAO ◽  
Chunlong YAO ◽  
Qingbin MENG ◽  
Xiaoqiang YU ◽  
Xu LI

2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


2013 ◽  
Vol 33 (6) ◽  
pp. 1604-1607
Author(s):  
Guang YANG ◽  
Lei ZHANG ◽  
Fan LI

Sign in / Sign up

Export Citation Format

Share Document