The effect of irrigation and crop load on stem water potential and apple fruit size

1997 ◽  
Vol 72 (5) ◽  
pp. 765-771 ◽  
Author(s):  
A. Naor ◽  
I. Klein ◽  
I. Doron ◽  
Y. Gal ◽  
Z. Ben-David ◽  
...  
2001 ◽  
Vol 126 (2) ◽  
pp. 252-255 ◽  
Author(s):  
Amos Naor

Interrelations between water potential and fruit size, crop load, and stomatal conductance were studied in drip-irrigated `Spadona' pear (Pyrus communis L) grafted on quince C (Cydonia oblonga L.) rootstock and growing in a semi-arid zone. Five irrigation rates were applied in the main fruit growth phase: rates of 0.25, 0.40, 0.60, 0.80, and 1.00 of “Class A” pan evaporation rate. The crop in each irrigation treatment was adjusted to four levels (200 to 1200 fruit per tree) by hand thinning at the beginning of June 1999. The crop was harvested on 1 Aug. 1999, and fruit size was determined by means of a commercial sorting machine. Soil, stem, and leaf water potentials and stomatal conductance were measured during the season. Crop yield was highly correlated with stem and soil water potentials. The highest midday stem water potential was lower than values commonly reported for nonstressed trees, and was accompanied by high soil water potential, indicating that the maximal water absorption rate of the root system under those particular soil conditions was limited. Stomatal conductance was highly correlated with leaf water potential (r2 = 0.54), but a much better correlation was found with stem water potential (r2 = 0.80). Stomatal conductance decreased at stem water potentials less than -2.1 MPa. Both stem water potential and stomatal conductance were unaffected by crop load under a wide range of irrigation rates.


2001 ◽  
Vol 126 (1) ◽  
pp. 140-143 ◽  
Author(s):  
A. Naor ◽  
H. Hupert ◽  
Y. Greenblat ◽  
M. Peres ◽  
A. Kaufman ◽  
...  

The interactions between irrigation and crop level with respect to fruit size distribution and midday stem water potential were investigated for 3 years in a nectarine (Prunus persica L. `Fairlane') orchard located in a semi-arid zone. Wide ranges of crop loads and irrigation rates in stage III were employed, extending from practically nonlimiting to severely limiting levels. Irrigation during stage III of fruit growth ranged from 0.63 to 1.29 of potential evapotranspiration (ETp). Fruit were hand thinned to a wide range of fruit levels (300 to 2000) fruit/tree in the 555-tree/ha orchard. The yields and stem water potentials from 1996, 1997 and 1998 were combined together and the interrelations among yield, crop load and stem water potential were examined. Fruit <55 mm in diameter growing at 400 fruit per tree were the only ones not affected by irrigation level. The yield of fruit of 60 to 75 mm in diameter increased with irrigation level, but only a slight increase was observed when the irrigation rate rose above 1.01 ETp. A significant decrease in the yields of 60 to 65, 65 to 70, and 70 to 75-mm size grades occurred at crop levels greater than 1000, 800, and 400 fruit per tree, respectively. Midday stem water potential decreased with increasing crop level, and it is suggested that midday stem water potential responds to crop load rather than crop level. Relative yields of the various size grades were highly correlated with midday stem water potential. It was suggested that the midday stem water potential integrates the combined effects of water stress and crop load on nectarine fruit size.


HortScience ◽  
2016 ◽  
Vol 51 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Denise Neilsen ◽  
Gerry Neilsen ◽  
Sunghee Guak ◽  
Tom Forge

Uncertain water supplies resulting from changing climatic conditions in western North America led to this investigation of the role of crop load reduction in maintaining performance of high-density ‘Ambrosia’ apple (Malus ×domestica) on M.9 rootstock. A split-plot experimental design was imposed for three growing seasons (2007–09) with six replicates of four main plot irrigation treatments and three crop load subplots comprised of three trees. Four season-long irrigation (Irr) treatments were applied through 2 × 4 L·h−1 drip emitters per tree and included Irr1) control [100% evapotranspiration (ET) replacement], Irr2) 50% ET replacement, Irr3) 50% ET replacement to half the emitters, and Irr4) an increasingly severe treatment commencing at 50% ET replacement (once every 2 days) in 2007 and progressing to 25% and 18% ET replacement, 2008–09. Three target crop loads were established annually, 4–5 weeks after bloom as low (2.5, 3, and 3.75), medium (4.5, 6, and 7.5), and high (9, 12, and 15) fruit/cm2 trunk cross-sectional area (TCSA) 2007–09, respectively, by hand thinning around 4 weeks after bloom. Volumetric soil moisture contents generally reflected the amount of water applied and ranged from 20% for control (Irr1) to <10% for Irr4. Both irrigation and crop load treatments affected midday stem water potential more than leaf photosynthesis and stomatal conductance (gS). By the 2nd and 3rd year stem potential values for irrigation treatments ranged from a maximum of −1.0 to −1.3 MPa for Irr1 to minimums ≤-2.0 MPa for Irr4. gS decreased as midday stem potential decreased, but at any given stem potential value was greater at high crop loads, presumably in response to an increased demand for photosynthates. Fruit size decreased as crop load increased, but as irrigation deficits became more severe, fruit size was more closely correlated with stem water potential than gS. Consequently, fruit size was controlled by two mechanisms, competition for photosynthates and the effects of plant water status on gS. Negative linear relationships between crop load and average fruit size were used to determine the crop load required to produce an average fruit size of 200 g at different irrigation deficits. It was not possible to achieve adequate fruit size when applications were very low, as at 18% to 25% ET in Irr4. Crop load reduction around mid-June had no negative consequences for fruit quality, enhancing fruit color, and soluble solids concentration (SSC) and did not affect the incidence of sunburn, internal breakdown or bitter pit at harvest.


1995 ◽  
Vol 120 (4) ◽  
pp. 577-582 ◽  
Author(s):  
Amos Naor ◽  
Isaac Klein ◽  
Israel Doron

The sensitivity of leaf (ψleaf) and stem (ψstem) water potential and stomatal conductance (gs) to soil moisture availability in apple (Malus domestics Borkh.) trees and their correlation with yield components were studied in a field experiment. Two drip irrigation treatments, 440 mm (H) and 210 mm (L), were applied to a `Golden Delicious' apple orchard during cell enlargement stage (55-173 days after full bloom). Data collected included ψstem, y leaf, gs, and soil water potential at 25 (ψsoil-25) and 50 cm (ψsoil-50). No differences in midday ψleaf's were found between irrigation treatments. Stem water potential was higher in the H treatment than in the L treatment in diurnal measurements, and at midday throughout the season. Stomatal conductance of the H treatment was higher than the L treatment throughout the day. Stomatal conductance between 0930 and 1530 hr were highly correlated with ψstem. The H treatment increased the percentage of fruit >65 mm, and increased the proportion of earlier harvested fruit reaching marketable size compared to the L treatment. Fruit size in the first harvest and the total yield were highly correlated with ψstem. The degree of correlation between plant water stress indicators and yield component decreased in the following order: ψstem>ψsoil-25,>ψsoil-50>ψleaf. The data suggest that midday ψstem may serve as a preferable plant water stress indicator with respect to fruit size.


2007 ◽  
Vol 58 (7) ◽  
pp. 670 ◽  
Author(s):  
Mark G. O'Connell ◽  
Ian Goodwin

Crop water relations, vegetative and reproductive growth, and soil water status were studied during 2 seasons to determine the effectiveness of partial rootzone drying (PRD) in a mature micro-irrigated pear orchard in the Goulburn Valley, Australia. PRD treatments were 50% (PRD50) and 100% (PRD100) of predicted crop water requirement (ETc) applied on one side of the tree alternated on a 14-day cycle compared with a Control treatment, which received 100% of ETc irrigated on both sides of the tree. Irrigation was applied daily by micro-jets to replace ETc estimated using reference crop evapotranspiration (ETo) and a FAO-56 crop coefficient of 1.15 adjusted for tree size. The PRD50 regime applied 174–250 mm for the season v. 347–470 mm for both the Control and PRD100 treatments. Irrigation maintained a well watered rootzone under the emitter compared with the drying profiles of the alternated wet/dry irrigated zones of the PRD treatments. There was no significant benefit of PRD100 compared with the Control irrigation regime. Similar vegetative growth (canopy radiation interception), reproductive growth (fruit growth rate, final fruit size, yield), fruit quality (total soluble solids, flesh firmness), and crop water relations (midday leaf conductance, midday leaf and stem water potential) were measured between the Control and PRD100. Trees under the PRD50 regime showed symptoms of severe water stress, that being greater fruit drop, reduced fruit size, lower yield, reduced leaf conductance, and lower leaf and stem water potential. The 50% water saving afforded by PRD50 led to a yield penalty of 16–28% compared with the Control and PRD100. PRD50 fruit failed to meet commercial cannery requirements due to poor fruit size. We conclude from an agronomic basis that deficit PRD irrigation management is not recommended for micro-irrigated pear orchards on fine-textured soils in the Goulburn Valley, Australia.


2007 ◽  
Vol 58 (11) ◽  
pp. 1068 ◽  
Author(s):  
Mark G. O'Connell ◽  
Ian Goodwin

Partial rootzone drying (PRD) is a new irrigation strategy whereby water is withheld from part of the rootzone while another part is well watered. A successful PRD strategy should reduce tree water use through stomatal control of transpiration and reduce vegetative growth while maintaining fruit size and yield. A field experiment examined crop water relations and production performance of PRD in a commercial apple orchard on loam soil in the Goulburn Valley, Australia. The orchard consisted of high-density (1420 trees/ha) 8-year-old ‘Pink Lady’ apple trees trained as central leader and irrigated by microjets. The effects of PRD on leaf/stem water potential, vegetative growth, yield components and fruit quality were investigated during two seasons (2001–02, Year 1 and 2002–03, Year 2). The 2-year average growing season reference crop evapotranspiration and rainfall was 954 and 168 mm, respectively. Three irrigation treatments were established: (1) deficit irrigation (DI, supplied 50% of water to a fixed side of tree); (2) PRD supplied 50% of water to alternating sides of tree; (3) and conventional irrigation (CI, supplied 100% water to both sides of tree). Irrigation inputs under the CI treatment were 334 and 529 mm for Year 1 and Year 2, respectively. In Year 1, the volume of irrigation applied to CI treatment inputs equated to the replacement of predicted crop evapotranspiration (ETc) based on a mid-season FAO-56 crop coefficient with adjustment for tree size. Vegetative growth, fruit production and water status showed both PRD and DI treatments led to a classical ‘deficit irrigation’ water stress response. Leaf water potential, leaf conductance, fruit size, shoot growth and yield were reduced on PRD and DI trees compared to the fully watered (CI) trees. In Year 2, CI inputs exceeded estimated ETc by 2-fold. Consequently, minimal or no differences between irrigation regimes were measured in stem water potential, vegetative growth, yield components and fruit quality. Fruit disorders (sunburn, russet, misshape, markings, frost damage) were not affected by irrigation regime in either season. We contend that further effort is required to determine under what circumstances or environments there is a PRD response that saves water and maintains yield and quality for apple.


HortScience ◽  
2015 ◽  
Vol 50 (7) ◽  
pp. 1070-1074 ◽  
Author(s):  
Lenny Wells

Pecan [Carya illinoinensis (Wangenh.) K. Koch] tree stem water potential (ψ), shoot length, nut yield, and nut quality for the following treatments were evaluated in a commercial pecan orchard in Berrien County, GA; 1) current recommended irrigation schedule, 2) a reduced early season irrigation schedule, and 3) non-irrigated control. Water Stress on pecan occurred at ≈−0.78 MPa using the pressure chamber to measure stem water potential. Regression analysis suggests that irrigation scheduling for mature pecan trees may be needed when volumetric water content reaches 10% on Tifton loamy sand soil. Water stress in pecan is correlated with soil moisture from budbreak through the end of nut sizing. Pecan trees bearing a moderate to heavy crop load may undergo water stress during the kernel-filling stage regardless of soil moisture level. Therefore, it is suggested that water stress during the kernel-filling period is a function of nut development, crop load, or both in addition to soil moisture. The reduced early season irrigation schedule provided a 38% reduction in irrigation water use with no significant effect on pecan tree water stress, yield, or quality, suggesting that pecan trees can tolerate moderate early season water stress with no effect on pecan yield or quality under southeastern U.S. environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document