Chilling injury in relation to ethylene biosynthesis in `Kensington Pride' mango fruit

2004 ◽  
Vol 79 (1) ◽  
pp. 82-90 ◽  
Author(s):  
S Suresh Nair ◽  
Z Zora Singh ◽  
S. C. Tan
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 457b-457 ◽  
Author(s):  
Arunya Limbanyen ◽  
Jeffrey K. Brecht ◽  
Steven A. Sargent ◽  
Jerry A. Bartz

Preparation and handling procedures for fresh-cut mango slices were developed using `Tommy Atkins', `Haden', and `Palmer' mangoes. Fruit with yellow flesh color (no green color remaining) were optimum maturity for fresh-cut in terms of maintenance of acceptable appearance, texture, and taste; riper fruit developed flesh breakdown and more browning. Postharvest life of fresh-cut mango at 5 °C was 8 to 10 d with no evidence of chilling injury and was limited by flesh browning and loss of firmness. Respiration rates ranged from 32 to 40 mg CO2/kg per hr and ethylene production was typically ≤0.1 μl·kg–1·hr–1. The SSC changed little during storage, while pH varied from 3.5 to 4.8 and TA typically declined by 30% to 40%. Peeling to a depth of at least 2 mm and trimming flesh near the stem scar was necessary to minimize browning. Imported fruit that had been heat-treated for insect quarantine showed more severe browning than Florida fruit that had not been heat-treated. Preparation in aseptic conditions and dipping fruit in a 100 ppm NaOCl solution at pH 7 before and after peeling protected against decay during storage but dipping in chlorine after slicing without removal of excess liquid resulted in flesh translucency and breakdown. Dipping in 1% CaCl2 solution had no effect on flesh firmness (Instron) or browning. Storage in an unvented plastic clamshell container, which developed an atmosphere of 2.25% CO2 plus 19% O2, did not improve shelf life, but a MA of 10% CO2 plus 10% O2 was subjectively judged to slow browning and softening and resulted in no off flavor compared to air storage.


2008 ◽  
Vol 48 (2) ◽  
pp. 172-181 ◽  
Author(s):  
Baogang Wang ◽  
Jianhui Wang ◽  
Hao Liang ◽  
Jianyong Yi ◽  
Jingjing Zhang ◽  
...  

HortScience ◽  
2015 ◽  
Vol 50 (12) ◽  
pp. 1795-1800 ◽  
Author(s):  
Peiyan Li ◽  
Xiaolin Zheng ◽  
Md. Golam Ferdous Chowdhury ◽  
Kim Cordasco ◽  
Jeffrey K. Brecht

Effects of postharvest oxalic acid (OA) application on chilling injury (CI) in harvested mango fruit (Mangifera indica L.) were investigated using ‘Tommy Atkins’ fruit from Florida and ‘Zill’ fruit from Panzhihua. The OA was applied to harvested fruit as a 5 or 10 mm drench for 10 or 15 minutes at 25 °C. ‘Tommy Atkins’ fruit typically develop external CI symptoms while ‘Zill’ develops internal symptoms. Development of CI symptoms was significantly reduced in OA-treated ‘Tommy Atkins’ fruit stored for 18 days at 5 °C as was the rate of softening upon transfer to 25 °C for 4 days. However, OA treatment did not substantially control fruit decay. For ‘Zill’, CI development was significantly reduced in OA-treated fruit during storage at 10 °C for 49 days and subsequently for 4 days at 25 °C. In addition, membrane integrity was enhanced and the activities of the antioxidant system enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were elevated, although there were decreases in both hydrogen peroxide (H2O2) content and superoxide radical production in OA-treated fruit. The activities of some enzymes of the energy cycle were also elevated in the OA-treated fruit, including succinate dehydrogenase (SDH), cytochrome C oxidase (CCO), H+-adenosine triphosphatase (H+-ATPase), and Ca2+-adenosine triphosphatase (Ca2+-ATPase). Thus, OA may enhance CI tolerance in mango fruit by maintaining membrane integrity associated with enhanced antioxidant activity and regulation of energy metabolism. Application of 5 mm OA appears to be beneficial in controlling postharvest CI in mango fruit.


1999 ◽  
Vol 22 (12) ◽  
pp. 1579-1586 ◽  
Author(s):  
M. Ben-Amor ◽  
B. Flores ◽  
A. Latché ◽  
M. Bouzayen ◽  
J. C. Pech ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document