The weak beam technique as applied to the determination of the stacking-fault energy of copper

1971 ◽  
Vol 24 (192) ◽  
pp. 1365-1381 ◽  
Author(s):  
W. M. Stobbs ◽  
C. H. Sworn
Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


1980 ◽  
Vol 11 (7) ◽  
pp. 1125-1130 ◽  
Author(s):  
G. J. L. Wegen ◽  
P. M. Bronsveld ◽  
J. Th. M. Hosson

1972 ◽  
Vol 26 (3) ◽  
pp. 765-768 ◽  
Author(s):  
H. M. Kramer ◽  
J. A. Venables

1981 ◽  
Vol 66 (2) ◽  
pp. 425-429 ◽  
Author(s):  
M. K. Agarwal ◽  
J. V. Patel ◽  
N. G. Patel

1968 ◽  
Vol 21 (6) ◽  
pp. 941 ◽  
Author(s):  
P Humble ◽  
CT Forwood

At present there are three methods for obtaining values of the stacking fault energy y of face-centred cubic (f.c.c.) materials by direct observation of dislocationstacking fault configurations in the electron microscope. These are based on measurements of extended three-fold dislocation nodes (e.g. Whelan 1958; Brown and ThOlen 1964), faulted dipole configurations (e.g. Haussermann and Wilkens 1966; Steeds 1967), and triangular Frank dislocation loops and stacking fault tetrahedral (e.g. Silcox and Hirsch 1959; Loretto, Clarebrough, and Segall 1965). The main advantages of the third method over the other two are that it is applicable to materials of a very wide range of stacking fault energy and involves only simple length measurements of defects that are easily recognized. However, it has suffered from the disadvantage that the values of y deduced from these measurements relied on an incomplete theory. The present authors have reconsidered this problem and, subject to the limitations of isotropic linear elasticity, have taken into account the major variables that may affect the values of y. It is the purpose of this note to present the results of this theory in a form in which values of y may easily be obtained from measurements of Frank dislocation loops and stacking fault tetrahedral without the resources of a large digital computer.


Sign in / Sign up

Export Citation Format

Share Document