Learning Improper Fractions with the Number Line and the Area Model

Author(s):  
Jing Tian ◽  
Victoria Bartek ◽  
Maya Z. Rahman ◽  
Elizabeth A. Gunderson
Keyword(s):  
2012 ◽  
Author(s):  
David Landy ◽  
Zachary J. Davis ◽  
Brian M. Guay ◽  
Megan L. Delaunay ◽  
Arthur Charlesworth ◽  
...  

2013 ◽  
Author(s):  
Julia Bahnmueller ◽  
Stefan Huber ◽  
Korbinian Moeller ◽  
Hans-Christoph Nuerk

2020 ◽  
Author(s):  
Anat Feldman ◽  
Michael Shmueli ◽  
Dror Dotan ◽  
Joseph Tzelgov ◽  
Andrea Berger

In recent years, there has been growing interest in the development of mental number line (MNL) representation examined using a number-to-position task. In the present study, we investigated the development of number representation on a 0-10 number line using a computerized version of the number-to-position task on a touchscreen, with restricted response time; 181 children from first through sixth grade were tested. We found that the pattern of estimated number position on the physical number line was best fit by the sigmoidal curve function–which was characterized by underestimation of small numbers and overestimation of large numbers–and that the breakpoint changed with age. Moreover, we found that significant developmental leaps in MNL representation occurred between the first and second grades and again between the second and third grades, which was reflected in the establishment of the right endpoint and the number 5 as anchor points, yielding a more accurate placement of other numbers along the number line.


2021 ◽  
pp. 174702182110087
Author(s):  
Lauren Aulet ◽  
Sami R Yousif ◽  
Stella Lourenco

Multiple tasks have been used to demonstrate the relation between numbers and space. The classic interpretation of these directional spatial-numerical associations (d-SNAs) is that they are the product of a mental number line (MNL), in which numerical magnitude is intrinsically associated with spatial position. The alternative account is that d-SNAs reflect task demands, such as explicit numerical judgments and/or categorical responses. In the novel ‘Where was The Number?’ task, no explicit numerical judgments were made. Participants were simply required to reproduce the location of a numeral within a rectangular space. Using a between-subject design, we found that numbers, but not letters, biased participants’ responses along the horizontal dimension, such that larger numbers were placed more rightward than smaller numbers, even when participants completed a concurrent verbal working memory task. These findings are consistent with the MNL account, such that numbers specifically are inherently left-to-right oriented in Western participants.


2021 ◽  
pp. 001440292110088
Author(s):  
Madhavi Jayanthi ◽  
Russell Gersten ◽  
Robin F. Schumacher ◽  
Joseph Dimino ◽  
Keith Smolkowski ◽  
...  

Using a randomized controlled trial, we examined the effect of a fractions intervention for students experiencing mathematical difficulties in Grade 5. Students who were eligible for the study ( n = 205) were randomly assigned to intervention and comparison conditions, blocked by teacher. The intervention used systematic, explicit instruction and relied on linear representations (e.g., Cuisenaire Rods and number lines) to demonstrate key fractions concepts. Enhancing students’ mathematical explanations was also a focus. Results indicated that intervention students significantly outperformed students from the comparison condition on measures of fractions proficiency and understanding ( g = 0.66–0.78), number line estimation ( g = 0.80–1.08), fractions procedures ( g = 1.07), and explanation tasks ( g = 0.68–1.23). Findings suggest that interventions designed to include explicit instruction, along with consistent use of the number line and opportunities to explain reasoning, can promote students’ proficiency and understanding of fractions.


Sign in / Sign up

Export Citation Format

Share Document