Rayleigh surface wave at an impedance boundary of an incompressible micropolar solid half-space

Author(s):  
Baljeet Singh ◽  
Baljinder Kaur
2017 ◽  
Vol 26 (3-4) ◽  
pp. 73-78 ◽  
Author(s):  
Baljeet Singh ◽  
Baljinder Kaur

AbstractIn this paper, the governing equations of an incompressible rotating orthotropic elastic medium are formulated and are solved to obtain Rayleigh surface wave solutions in a particular half-space. The surface of half-space is subjected to impedance boundary conditions, in which normal and tangential stresses are proportional to frequency times normal and tangential displacement components, respectively. A secular equation for Rayleigh surface wave is obtained. With the help of MATLAB, the secular equation is solved numerically to obtain non-dimensional wave speed. The dependence of non-dimensional wave speed on non-dimensional material constant, rotation parameter and impedance parameters is shown graphically.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 1980-1987
Author(s):  
Baljeet Singh ◽  
Baljinder Kaur

The propagation of Rayleigh type surface waves in a rotating elastic half-space of orthotropic type is studied under impedance boundary conditions. The secular equation is obtained explicitly using traditional methodology. A program in MATLAB software is developed to obtain the numerical values of the nondimensional speed of Rayleigh wave. The speed of Rayleigh wave is illustrated graphically against rotation rate, nondimensional material constants, and impedance boundary parameters.


1966 ◽  
Vol 62 (4) ◽  
pp. 811-827 ◽  
Author(s):  
R. D. Gregory

AbstractA time harmonic Rayleigh wave, propagating in an elastic half-space y ≥ 0, is incident on a certain impedance boundary condition on y = 0, x > 0. The resulting field consists of a reflected surface wave, scattered body waves, and a transmitted surface wave appropriate to the new boundary conditions. The elastic potentials are found exactly by Fourier transform and the Wiener-Hopf technique in the case of a slightly dissipative medium. The ψ potential is found to have a logarithmic singularity at (0,0), but the φ potential though singular is bounded there. Analytic forms are given for the amplitudes of the reflected and transmitted surface waves, and for the scattered field. The reflexion coefficient is found to have a simple form for small impedances. A uniqueness theorem, based on energy considerations, is proved.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Baljeet Singh

The Rayleigh surface wave is studied at a stress-free thermally insulated surface of an isotropic, linear, and homogeneous thermoelastic solid half-space with microtemperatures. The governing equations of the thermoelastic medium with microtemperatures are solved for surface wave solutions. The particular solutions in the half-space are applied to the required boundary conditions at stress-free thermally insulated surface to obtain the frequency equation of the Rayleigh wave. Some special cases are also derived. The non-dimensional speed of Rayleigh wave is computed numerically and presented graphically to reveal the dependence on the frequency and microtemperature constants.


Sign in / Sign up

Export Citation Format

Share Document