The attenuation of a Rayleigh wave in a half-space by a surface impedance

1966 ◽  
Vol 62 (4) ◽  
pp. 811-827 ◽  
Author(s):  
R. D. Gregory

AbstractA time harmonic Rayleigh wave, propagating in an elastic half-space y ≥ 0, is incident on a certain impedance boundary condition on y = 0, x > 0. The resulting field consists of a reflected surface wave, scattered body waves, and a transmitted surface wave appropriate to the new boundary conditions. The elastic potentials are found exactly by Fourier transform and the Wiener-Hopf technique in the case of a slightly dissipative medium. The ψ potential is found to have a logarithmic singularity at (0,0), but the φ potential though singular is bounded there. Analytic forms are given for the amplitudes of the reflected and transmitted surface waves, and for the scattered field. The reflexion coefficient is found to have a simple form for small impedances. A uniqueness theorem, based on energy considerations, is proved.

1975 ◽  
Vol 77 (2) ◽  
pp. 385-404 ◽  
Author(s):  
R. D. Gregory

AbstractSuppose that an elastic half-space, which contains certain surface defects, inclusions and cavities, is in free, two-dimensional, time-harmonic vibration, with the wave field at infinity ‘outgoing’ in character. It is shown that the elastic potentials representing such a ‘standing mode’ can be expressed in the form of contour integrals, for instanceU(t) being an analytic function of t. By considering the far field of these potentials, it is shown that U(t) is zero on a certain arc in the t-plane and is therefore identically zero. It follows that ø(r) is zero everywhere and this proves the non-existence of such standing modes in these configurations.This uniqueness theorem justifies the solution given by the author (Gregory (2)) for the problem in which time harmonic stresses act on the walls of a cylindrical cavity lying beneath the surface of an elastic half-space. It is also shown that if a Rayleigh surface wave is incident on any system of surface defects, inclusions and cavities, then energy must be transferred from the surface wave to scattered outgoing body waves of both P and S types.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 1980-1987
Author(s):  
Baljeet Singh ◽  
Baljinder Kaur

The propagation of Rayleigh type surface waves in a rotating elastic half-space of orthotropic type is studied under impedance boundary conditions. The secular equation is obtained explicitly using traditional methodology. A program in MATLAB software is developed to obtain the numerical values of the nondimensional speed of Rayleigh wave. The speed of Rayleigh wave is illustrated graphically against rotation rate, nondimensional material constants, and impedance boundary parameters.


2019 ◽  
Vol 53 (1) ◽  
pp. 325-350
Author(s):  
Sergio Rojas ◽  
Ignacio Muga ◽  
Carlos Jerez-Hanckes

We show existence and uniqueness of the outgoing solution for the Maxwell problem with an impedance boundary condition of Leontovitch type in a half-space. Due to the presence of surface waves guided by an infinite surface, the established radiation condition differs from the classical one when approaching the boundary of the half-space. This specific radiation pattern is derived from an accurate asymptotic analysis of the Green’s dyad associated to this problem.


1962 ◽  
Vol 52 (1) ◽  
pp. 27-36
Author(s):  
J. T. Cherry

Abstract The body waves and surface waves radiating from a horizontal stress applied at the free surface of an elastic half space are obtained. The SV wave suffers a phase shift of π at 45 degrees from the vertical. Also, a surface wave that is SH in character but travels with the Rayleigh velocity is shown to exist. This surface wave attenuates as r−3/2. For a value of Poisson's ratio of 0.25 or 0.33, the amplitude of the Rayleigh waves from a horizontal source should be smaller than the amplitude of the Rayleigh waves from a vertical source. The ratio of vertical to horizontal amplitude for the Rayleigh waves from the horizontal source is the same as the corresponding ratio for the vertical source for all values of Poisson's ratio.


Author(s):  
R. D. Gregory

AbstractThe problem of the propagation of time harmonic waves in an isotropic elastic half-space containing a submerged cylindrical cavity is solved analytically. Linear plane strain conditions are assumed. Using an expansion theorem proved in a previous paper (Gregory (3)), the elastic potentials are expanded in a series form which automatically satisfies the governing equations, the conditions of zero stress on the flat surface, and the radiation conditions at infinity. The conditions of prescribed normal and tangential stresses on the cavity walls are shown to lead to an infinite system of equations for the expansion coefficients. This system of equations is shown to be a regular L2-system of the second kind and from its unique l2-solution, the solution to the problem is constructed. The fundamental questions of existence and uniqueness are fully treated and methods are described for constructing the solution.Three applications of the general theory are presented dealing respectively with the production, amplification and reflexion of Rayleigh waves.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


Sign in / Sign up

Export Citation Format

Share Document