secular equation
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Wen-Xiang Guo ◽  
Wu-Ming Liu

Abstract We investigate the SU(2) gauge effects on bilayer honeycomb lattice thoroughly. We discover a topological Lifshitz transition induced by the non-Abelian gauge potential. Topological Lifshitz transitions are determined by topologies of Fermi surfaces in the momentum space. Fermi surface consists of N = 8 Dirac points at π-flux point instead of N = 4 in the trivial Abelian regimes. A local winding number is defined to classify the universality class of the gapless excitations. We also obtain the phase diagram of gauge fluxes by solving the secular equation. Furthermore, the novel edge states of biased bilayer nanoribbon with gauge fluxes are also investigated.


Author(s):  
Trinh Thi Thanh Hue ◽  
Phan Thi Thu Phuong ◽  
Pham Hong Anh

The problem of Rayleigh waves in compressible orthotropic elastic half-space overlaid by a thin elastic layer of which principal material axes are coincident have been researched by many scientists. However, the problem with the conditions that the half-space and the layer have only one common principal material axis that perpendicular to the layer while the remains are not identical has not gotten enough attention. This paper presents a traditional approach to obtain an approximate secular equation by approximately replacing the thin layer by effective boundary conditions of third-order. The wave then is considered as a Rayleigh wave propagating in an orthotropic half-space, without coating, subjected to the effective boundary conditions. This explicit approximate secular equation is potentially useful in non-damage assessment studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
S. Di Sabatino ◽  
J. Koskelo ◽  
J. Prodhon ◽  
J. A. Berger ◽  
M. Caffarel ◽  
...  

The Extended Koopman’s Theorem (EKT) provides a straightforward way to compute charged excitations from any level of theory. In this work we make the link with the many-body effective energy theory (MEET) that we derived to calculate the spectral function, which is directly related to photoemission spectra. In particular, we show that at its lowest level of approximation the MEET removal and addition energies correspond to the so-called diagonal approximation of the EKT. Thanks to this link, the EKT and the MEET can benefit from mutual insight. In particular, one can readily extend the EKT to calculate the full spectral function, and choose a more optimal basis set for the MEET by solving the EKT secular equation. We illustrate these findings with the examples of the Hubbard dimer and bulk silicon.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 54
Author(s):  
J. Antúnez-García ◽  
D. H. Galván ◽  
J. Guerrero-Sánchez ◽  
F. N. Murrieta-Rico ◽  
R. I. Yocupicio-Gaxiola ◽  
...  

In terms of a method based on Cauchy integrals, we have obtained a robust analytic expression to predict a unique physical solution for the Scholte slowness in all range of possible elastic and isotropic media. Proper analysis of the discontinuities of the secular Scholte equation allows the identification of the velocity of the evanescent wave in one of three possible regimes. When the liquid phase tends to vanish, it was observed: a) the Rayleigh wave solution or the free surface limit, and b) the rarefied fluid medium limit, where there exists a gradual extinction of the Scholte wave as both the density and velocity of the fluid decrease. In general terms, the results show that the propagation speed of a Scholte wave is less than or equal to that of a Rayleigh wave.


Author(s):  
Sergey V. Kuznetsov

Stoneley wave velocity variation is analyzed by solving the modified Scholte secular equation for velocity of Stoneley waves, allowing to find dependency of the Stoneley wave velocity on the Wiechert parameter and construct a set of inequalities that confines region of existence for the appropriate root of the secular equation. Numerical analysis for Stoneley wave velocity dependence on the Wiechert parameter for both auxetics (materials with negative Poisson’s ratio) and nonauxetics revealed the presence of (i) asymptotes indicating degeneracy of Stoneley waves into the corresponding Rayleigh waves; and (ii) common extremums relating to degeneracy of Stoneley waves into the corresponding bulk shear waves.


Author(s):  
Pavel Kurasov ◽  
Jacob Muller

AbstractThe spectra of n-Laplacian operators $$(-\Delta )^n$$ ( - Δ ) n on finite metric graphs are studied. An effective secular equation is derived and the spectral asymptotics are analysed, exploiting the fact that the secular function is close to a trigonometric polynomial. The notion of the quasispectrum is introduced, and its uniqueness is proved using the theory of almost periodic functions. To achieve this, new results concerning roots of functions close to almost periodic functions are proved. The results obtained on almost periodic functions are of general interest outside the theory of differential operators.


2020 ◽  
Vol 34 (18) ◽  
pp. 2050158
Author(s):  
Heung-Ryoul Noh

In this paper, we present analytical solutions to the Bloch equations. After solving the secular equation for the eigenvalues, derived from the Bloch equations, analytical solutions for the temporal evolution of the magnetization vector are obtained at arbitrary initial conditions. Subsequently, explicit analytical expressions of the propagator for the Bloch equations and optical Bloch equations are obtained. Compared to the results of existing analytical studies, the present results are more succinct and rigorous, and they can predict the behavior of the propagator in different regions of parameter spaces. The analytical solutions to the propagator can be directly used in composite laser-pulse spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document