Time and temperature sensitivity of the hybrid III lumbar spine

2021 ◽  
pp. 1-6
Author(s):  
Allison L. Schmidt ◽  
Maria A. Ortiz-Paparoni ◽  
Jay K. Shridharani ◽  
Roger W. Nightingale ◽  
Frank A. Pintar ◽  
...  
Author(s):  
Kelly Bosch

Although blast mitigation seats are historically designed to protect the 50th percentile male occupant based on mass, the scope of the occupant centric platform (OCP) Technology Enabled Capability Demonstration (TEC-D) within the U.S. Army Tank Automotive Research Development Engineering Center (TARDEC) Ground System Survivability has been expanded to encompass lighter and heavier occupants which represents the central 90th percentile of the military population. A series of drop tower tests were conducted on twelve models of blast energy-attenuating (EA) seats to determine the effects of vertical accelerative loading on ground vehicle occupants. Two previous technical publications evaluated specific aspects of the results of these drop tower tests on EA seats containing the three sizes of anthropomorphic test devices (ATDs) including the Hybrid III 5th percentile female, the Hybrid III 50th percentile male, and the Hybrid III 95th percentile male. The first publication addressed the overall trends of the forces, moments, and accelerations recorded by the ATDs when compared to Injury Assessment Reference Values (IARVs), as well as validating the methodology used in the drop tower evaluations1. Review of ATD data determined that the lumbar spine compression in the vertical direction could be used as the “go/no-go” indicator of seat performance. The second publication assessed the quantitative effects of Personal Protective Equipment (PPE) on the small occupant, as the addition of a helmet and Improved Outer Tactical Vest (IOTV) with additional gear increased the weight of the 5th percentile female ATD more than 50%2. Comparison of the loading data with and without PPE determined that the additional weight of PPE increased the overall risk of compressive injury to the lumbar and upper neck of the small occupant during an underbody blast event. Using the same data set, this technical paper aimed to evaluate overall accelerative loading trends of the 5th percentile female ATD when compared to those of the 50th percentile male ATD in the same seat and PPE configuration. This data trend comparison was conducted to gain an understanding of how seat loading may differ with a smaller occupant. The focus of the data analysis centered around the lumbar spine compression, as this channel was the most likely to exceed the IARV limit for the 5th percentile female ATD. Based on the previous analysis of this data set, the lightest occupant trends showed difficulty in protecting against lumbar compression injuries with respect to the 5th percentile female’s IARV, whereas the larger occupants experienced fewer issues in complying with their respective IARVs for lumbar compression. A review of pelvis acceleration was also conducted for additional kinetic insight into the motion of the ATDs as the seat strokes. This analysis included a review of how the weight and size of the occupant may affect the transmission of forces through a stroking seat during the vertical accelerative loading impulse.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Daniel Aggromito ◽  
Mark Jaffrey ◽  
Allen Chhor ◽  
Bernard Chen ◽  
Wenyi Yan

When simulating or conducting land mine blast tests on armored vehicles to assess potential occupant injury, the preference is to use the Hybrid III anthropomorphic test device (ATD). In land blast events, neither the effect of body-borne equipment (BBE) on the ATD response nor the dynamic response index (DRI) is well understood. An experimental study was carried out using a drop tower test rig, with a rigid seat mounted on a carriage table undergoing average accelerations of 161 g and 232 g over 3 ms. A key aspect of the work looked at the various lumbar spine assemblies available for a Hybrid III ATD. These can result in different load cell orientations for the ATD which in turn can affect the load measurement in the vertical and horizontal planes. Thirty-two tests were carried out using two BBE mass conditions and three variations of ATDs. The latter were the Hybrid III with the curved (conventional) spine, the Hybrid III with the pedestrian (straight) spine, and the Federal Aviation Administration (FAA) Hybrid III which also has a straight spine. The results showed that the straight lumbar spine assemblies produced similar ATD responses in drop tower tests using a rigid seat. In contrast, the curved lumbar spine assembly generated a lower pelvis acceleration and a higher lumbar load than the straight lumbar spine assemblies. The maximum relative displacement of the lumbar spine occurred after the peak loading event, suggesting that the DRI is not suitable for assessing injury when the impact duration is short and an ATD is seated on a rigid seat on a drop tower. The peak vertical lumbar loads did not change with increasing BBE mass because the equipment mass effects did not become a factor during the peak loading event.


1994 ◽  
Author(s):  
P. C. Begeman ◽  
H. Visarius ◽  
L.-P. Nolte ◽  
P. Prasad
Keyword(s):  

Author(s):  
John Humm ◽  
David Moorcroft ◽  
Narayan Yoganandan ◽  
Rick DeWeese ◽  
Amanda Taylor ◽  
...  

Occupant injury potential to oblique loading at aircraft crash severities is unknown. The objective of the present study was to derive preliminary injury criteria for the Federal Aviation Administration (FAA) Hybrid III anthropomorphic test device (ATD) under oblique loading conditions. Twelve sled tests were conducted at four pulse severities and three configurations. An acceleration pulse representative of the one specified in Title 14 Code of Federal Regulations Part 25.562, emergency landing dynamic condition for horizontal impact was used as an input. Pulses were scaled in magnitude at 50, 61, 75 and 100% of the peak acceleration 13.7, 10.2, 8.6 and 6.8 m/s, respectively. The three conditions were: 45-degrees, no arm rest, pelvis restrained with two belts, legs restrained; 45-degrees, with arm rest, single lap belt, legs restrained; 30-degrees, no arm rest, two lap belts, legs unrestrained. The ATD was placed on a generic seat representative of aircraft seat geometry and the seat was oriented obliquely. ATD accelerations, thoracic and lumbar spine forces, and restraint forces were recorded. Peak tension forces in the thoracic and lumbar spine ranged from 10–12.7 kN at the highest pulse to 3.6–4.2 kN at the lowest pulse. Previously reported in-house post mortem human surrogate (PMHS) tests provided a matched-paired dataset for combining injuries with ATD metrics. From this limited sample set, 5.2 kN tension force in the spine is suggested for the FAA-Hybrid III ATD as a preliminary injury criteria in oblique loading in the aviation environment.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Xin Ye ◽  
Derek A. Jones ◽  
James P. Gaewsky ◽  
Bharath Koya ◽  
Kyle P. McNamara ◽  
...  

Abstract The goals of this study are to compare the lumbar spine response variance between the hybrid III, test device for human occupant restraint (THOR), and global human body models consortium simplified 50th percentile (GHBMC M50-OS) finite element models and evaluate the sensitivity of lumbar spine injury metrics to multidirectional acceleration pulses for spaceflight landing conditions. The hybrid III, THOR, and GHBMC models were positioned in a baseline posture within a generic seat with side guards and a five-point restraint system. Thirteen boundary conditions, which were categorized as loading condition variables and environmental variables, were included in the parametric study using a Latin hypercube design of experiments. Each of the three models underwent 455 simulations for a total of 1365 simulations. The hybrid III and THOR models exhibited similar lumbar compression forces. The average lumbar compression force was 45% higher for hybrid III (2.2 ± 1.5 kN) and 51% higher for THOR (2.0 ± 1.6 kN) compared to GHBMC (1.3 ± 0.9 kN). Compared to hybrid III, THOR sustained an average 64% higher lumbar flexion moment and an average 436% higher lumbar extension moment. The GHBMC model sustained much lower bending moments compared to hybrid III and THOR. Regressions revealed that lumbar spine responses were more sensitive to loading condition variables than environmental variables across all models. This study quantified the intermodel lumbar spine response variations and sensitivity between hybrid III, THOR, and GHBMC. Results improve the understanding of lumbar spine response in spaceflight landings.


1998 ◽  
Author(s):  
Ann Schoenbeck ◽  
Estrella Forster ◽  
Martin Rapaport ◽  
Leon Domzalski

2018 ◽  
Vol 19 (6) ◽  
pp. 657-663
Author(s):  
Allison L. Schmidt ◽  
Maria A. Ortiz-Paparoni ◽  
Jay K. Shridharani ◽  
Roger W. Nightingale ◽  
Cameron R. Bass

1999 ◽  
Author(s):  
Van Gowdy ◽  
Richard DeWeese ◽  
Micheal S. Beebe ◽  
Barry Wade ◽  
John Duncan ◽  
...  
Keyword(s):  

2002 ◽  
Vol 7 (4) ◽  
pp. 8-10
Author(s):  
Christopher R. Brigham ◽  
Leon H. Ensalada

Abstract Recurrent radiculopathy is evaluated by a different approach in the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, compared to that in the Fourth Edition. The AMA Guides, Fifth Edition, specifies several occasions on which the range-of-motion (ROM), not the Diagnosis-related estimates (DRE) method, is used to rate spinal impairments. For example, the AMA Guides, Fifth Edition, clarifies that ROM is used only for radiculopathy caused by a recurrent injury, including when there is new (recurrent) disk herniation or a recurrent injury in the same spinal region. In the AMA Guides, Fourth Edition, radiculopathy was rated using the Injury Model, which is termed the DRE method in the Fifth Edition. Also, in the Fourth Edition, for the lumbar spine all radiculopathies resulted in the same impairment (10% whole person permanent impairment), based on that edition's philosophy that radiculopathy is not quantifiable and, once present, is permanent. A rating of recurrent radiculopathy suggests the presence of a previous impairment rating and may require apportionment, which is the process of allocating causation among two or more factors that caused or significantly contributed to an injury and resulting impairment. A case example shows the divergent results following evaluation using the Injury Model (Fourth Edition) and the ROM Method (Fifth Edition) and concludes that revisions to the latter for rating permanent impairments of the spine often will lead to different results compared to using the Fourth Edition.


Sign in / Sign up

Export Citation Format

Share Document