drop tower
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Felicitas Lanzl ◽  
Fabian Duddeck ◽  
Saskia Willuweit ◽  
Steffen Peldschus

Abstract A deeper understanding of the mechanical characteristics of adipose tissue under large deformation is important for the analysis of blunt force trauma, as adipose tissue alters the stresses and strains that are transferred to subjacent tissues. Hence, results from drop tower tests of subcutaneous adipose tissue are presented (i) to characterise adipose tissue behaviour up to irreversible deformation, (ii) to relate this to the microstructural configuration, (iii) to quantify this deformation and (iv) to provide an analytical basis for computational modelling of adipose tissue under blunt impact. The drop tower experiments are performed exemplarily on porcine subcutaneous adipose tissue specimens for three different impact velocities and two impactor geometries. An approach based on photogrammetry is used to derive 3D representations of the deformation patterns directly after the impact. Median values for maximum impactor acceleration for tests with a flat cylindrical impactor geometry at impact velocities of 886 mm/s, 1253 mm/s and 2426 mm/s amount to 61.1 g, 121.6 g and 264.2 g, respectively, whereas thickness reduction of the specimens after impact amount to 16.7%, 30.5% and 39.3%, respectively. The according values for tests with a spherically shaped impactor at an impact velocity of 1253 mm/s are 184.2 g and 78.7%. Based on these results, it is hypothesised that, in the initial phase of a blunt impact, adipose tissue behaviour is mainly governed by the behaviour of the lipid inside the adipocytes, whereas for further loading, contribution of the extracellular collagen fibre network becomes more dominant.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jian Min ◽  
Zuo-Lei Wang ◽  
Yun-Peng Li ◽  
Wen-Ze Tao ◽  
Cun-Hui Li ◽  
...  

AbstractTaiji-1, which is the first technical verification satellite of China’s Space Gravitational Wave Detection Program, was successfully launched on August 31, 2019. The mission aimed to investigate the key technologies used in space gravitational wave detection. The inertial sensor, which was one of the main payloads, measured the residual acceleration of the satellite, and verified the drag-free control technology. Its performance was crucial to the success of the Taiji-1 mission. To ensure its performance in orbit, the inertial sensor was fully evaluated prior to launch. Owing to the gravitational acceleration on the ground, it is impossible to verify all the properties of the inertial sensor in a routine laboratory. A feasible method to conduct such tests is to use a drop tower. To guarantee the safety of the inertial sensor, a substitute was used with similar structure and circuit design. A total of 20 falls in three groups were completed, a set of research methods was established, and the importance of conducting simulations before the drop tests was verified. For the first time, the switch of different circuit gains in a drop tower test has been achieved and the National Microgravity Laboratory of China (NMLC) drop tower’s residual accelerations in three dimensions were measured. The results demonstrated that the microgravity level of the drop tower can reach about 58 μg0 in the fall direction and 13 μg0 along the horizontal axes.


Author(s):  
Á. Romero-Calvo ◽  
F. Garrone ◽  
A.J. García-Salcedo ◽  
I. Rivoalen ◽  
G. Cano-Gómez ◽  
...  

Author(s):  
Jian Min ◽  
Jun-Gang Lei ◽  
Yun-Peng Li ◽  
Dong-Xue Xi ◽  
Wen-Ze Tao ◽  
...  

Taiji-1 satellite was successfully launched on 31 August 2019, and it has been operating normally in orbit until now. A series of in-orbit experiments were carried out with the inertial sensor, which included the micro-thrust test, drag-free control test and laser interferometer test. Comprehensive performance simulations and tests of the inertial sensor were also carried out prior to the launch of Taiji-1, including the calibration and drop-tower tests. These tests were one of the preconditions for the success of these experiments. The calibration experiments were conducted in a cave-lab using the gravity-inclination method and the scale factors of the inertial sensor along Y- and Z-axis were measured. In addition, 20 drop-tower tests were carried out in the National Microgravity Laboratory of China (NMLC) drop tower and the control stability of all the axes was tested and optimized. A simulation model was used before each test, and the results showed that an accurate simulation prior to each experiment had an important role in ensuring the efficiency and accuracy of the experiment. The circuit-gain switch was realized for the first time during the drop-tower tests. The test results indicated that the microgravity level of the NMLC drop tower could reach about 13 [Formula: see text]g0 along the horizontal axes, offering an important reference for researchers planning to conduct microgravity experiments in the NMLC drop tower.


2021 ◽  
Vol 1721 ◽  
pp. 012019
Author(s):  
Y B Zhou ◽  
M Zhang ◽  
M Luo ◽  
X H Wang ◽  
X W Sun ◽  
...  
Keyword(s):  

2021 ◽  
Vol 249 ◽  
pp. 13003
Author(s):  
Kolja Joeris ◽  
Laurent Schönau ◽  
Lars Schmidt ◽  
Matthias Keulen ◽  
Vrinda Desai ◽  
...  

We present a newly developed experiment for the examination of low-speed impacts under asteroid conditions. More specifically, our experimental setup enables us to simulate a very clean milligravity environment under vacuum, in which projectiles are shot at a granular bed at several cm/s. This granular bed consists of irregularly formed basalt particles with different size distributions. The experiment is carried out in the Bremen drop tower in its catapult mode, granting more than 9 s microgravity. Here, we discuss the setup and assess its performance.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-12
Author(s):  
Stephanie Jarmak ◽  
Joshua Colwell ◽  
Adrienne Dove ◽  
Julie Brisset

Abstract Small, airless bodies are covered by a layer of regolith composed of particles ranging from μm-size dust to cm-size pebbles that evolve under conditions very different than those on Earth. Flight-based microgravity experiments investigating low-velocity collisions of cm-size projectiles into regolith have revealed that certain impact events result in a mass transfer from the target regolith onto the surface of the projectile. The key parameters that produce these events need to be characterized to understand the mechanical behavior of granular media, which is composed of the surfaces of small bodies. We carried out flight and ground-based research campaigns designed to investigate these mass transfer events. The goals of our experimental campaigns were (1) to identify projectile energy thresholds that influence mass transfer outcomes in low-energy collision events between cm-size projectiles and μm-size regolith, (2) to determine whether these mass transfer events required a microgravity environment to be observed, and (3) to determine whether the rebound portion of these collision events could be replicated in a laboratory drop tower environment. We found that (1) mass transfer events occurred for projectile rebound accelerations <7.8 m/s2 and we were unable to identify a corresponding impact velocity threshold, (2) mass transfer events require a microgravity environment, and (3) ourdrop tower experiments were able to produce mass transfer events. However, drop tower experiments do not exactly reproduce the free-particle impacts and rebound of the long-duration microgravity experiments and yielded systematically lower amounts of the overall mass transferred.


2020 ◽  
Vol 10 (24) ◽  
pp. 9098
Author(s):  
Katarzyna Kośla ◽  
Paweł Kubiak ◽  
Marzena Fejdyś ◽  
Karolina Olszewska ◽  
Marcin Łandwijt ◽  
...  

This article presents the method of preparation a new type of ballistic armor based on hybrid silicone-ceramic (HSC) composites with considerable flexibility. An experimental study on the ballistic behavior of HSC composites connected with soft body armor is presented against FSP.22 fragments. The effect of Al2O3 ceramics on the ballistic performance of HSC composite was investigated, and the fragmentation resistance process of the composite armor combining the HSC composite and soft aramid insert is clarified. Furthermore, impact resistance tests made with a drop tower which allows for a gravity drop of a mass along vertical guides onto a sample placed with an energy of 5 J were performed. The results presented in this paper show that the HSC composites can be successfully used as a hard body armor. However, they do not exhibit the properties of absorbing the impact energy generated during the drop tower tests. The test results show that the ballistic performance of composite armors is influenced by the hardness and Young modulus of ceramics and soft body armor panel. Additionally, in the article, the results of mechanical properties of silicones used for preparation of composites were presented and compiled to determine their role in the performance of impact protection.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7082
Author(s):  
Sarah Ridge ◽  
Dustin Bruening ◽  
Steven Charles ◽  
Cody Stahl ◽  
Daniel Smith ◽  
...  

Competitive figure skaters often suffer from overuse injuries, which may be due to the high impact forces endured during jump repetitions performed in practice and competition. However, to date, forces during on-ice figure skating have not been quantified due to technological limitations. The purpose of this study was to determine the optimal calibration procedure for a previously developed instrumented figure skating blade (IceSense). Initial calibration was performed by collecting data from the blade while 11 skaters performed off-ice jumps, landing on a force plate in the lab. However, mean peak force measurements from the blade were greater than the desired error threshold of ±10%. Therefore, we designed a series of controlled experiments which included measuring forces from a load cell rigidly attached to the top of the blade concurrently with strain data from the strain gauges on the blade. Forces were applied to the blade by adding weight to a drop tower or by manually applying force in a quasi-static manner. Both methods showed similar accuracy, though using the drop tower allowed precise standardization. Therefore, calibration was performed using the weighted drop method. This calibration was applied to strain gauge data from out-of-sample drop trials, resulting in acceptable estimates of peak force (less than 10% error). Using this calibration, we collected data on one figure skater and present results from an exemplar on-ice double flip jump. Using the IceSense device to quantify on-ice forces in a research setting may help inform training, technique, and equipment design.


Sign in / Sign up

Export Citation Format

Share Document