Production of bio-oil from algal biomass and its upgradation to biodiesel using CaO-based heterogeneous catalysts

2016 ◽  
Vol 13 (10) ◽  
pp. 969-976 ◽  
Author(s):  
M. Malpani ◽  
A. K. Varma ◽  
P. Mondal
2022 ◽  
pp. 159-180
Author(s):  
Jonas Karl Christopher N. Agutaya ◽  
Armando T. Quitain ◽  
Yik Lam Kam ◽  
Siti Zullaikah ◽  
Joseph Auresenia ◽  
...  

2017 ◽  
Vol 36 (3) ◽  
pp. 781-787 ◽  
Author(s):  
Shaobo Liang ◽  
Liqing Wei ◽  
Maxine L. Passero ◽  
Kevin Feris ◽  
Armando G. McDonald

2021 ◽  
Vol 24 (S1) ◽  
pp. 1-15
Author(s):  
Hassan Bouaik ◽  
Amine Tabal ◽  
Abdellatif Barakat ◽  
Khalifa El Harfi ◽  
Adil Aboulkas

2021 ◽  
Author(s):  
Asma Fiayaz

The present study investigated the utilization of algal biomass to produce bio-oil and acetone, butanol, and ethanol (ABE) products. Novel Clostridia fusants (C. beijernickii + C. thermocellum-CbCt and C. acetobutylicum + C. thermocellocum-CaCt) were developed using protoplast fusion technique and subsequently subjected to UV radiation for strain enhancement. Resultant mutated fusants showed improvement in thermal stability and higher resistance to biobutanol toxicity. Algal biomass was initially subjected to various hydrolysis treatments prior to fermentation. Combination treatment of thermal, chemical, and enzymatic resulted in maximum sugar release of 27.78 g/L. Maximum biobutanol concentration from fermentation using CbCt resulted in 7.98 g/L. Fermentation using CaCt produced a concentration of 7.39 g/L. Oil extraction from virgin algae investigated a green, bio-based approach using terpenes with ultrasonication and a modified, Bligh and Dyer method, separately. Combination method, ultrasonication followed by the modified Bligh and Dyer, resulted in oil yield of 46.27% (dlimonene) and 39.85% (p-cymene). Oil extraction was also produced from an algae sample following fermentation. Combined extraction method using fermentation sample resulted in oil yield of 65.04%.


2018 ◽  
Vol 84 (15) ◽  
Author(s):  
Sara L. Jackrel ◽  
Anita Narwani ◽  
Bastian Bentlage ◽  
Robert B. Levine ◽  
David C. Hietala ◽  
...  

ABSTRACT Algal biofuels have the potential to curb the emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity. Here, we show that species consortia of algae can improve the production of bio-oil, which benefits from both a high biomass yield and a high quality of biomass rich in fatty acids. We explain the underlying causes of increased quantity and quality of algal biomass among species consortia by showing that, relative to monocultures, species consortia can differentially regulate lipid metabolism genes while growing to higher levels of biomass, in part due to a greater utilization of nutrient resources. We identify multiple genes involved in lipid biosynthesis that are frequently upregulated in bicultures and further show that these elevated levels of gene expression are highly predictive of the elevated levels in biculture relative to that in monoculture of multiple quality metrics of algal biomass. These results show that interactions between species can alter the expression of lipid metabolism genes and further demonstrate that our understanding of diversity-function relationships from natural ecosystems can be harnessed to improve the production of bio-oil. IMPORTANCE Algal biofuels are one of the more promising forms of renewable energy. In our study, we investigate whether ecological interactions between species of microalgae regulate two important factors in cultivation—the biomass of the crop produced and the quality of the biomass that is produced. We found that species interactions often improved production yields, especially the fatty acid content of the algal biomass, and that differentially expressed genes involved in fatty acid metabolism are predictive of improved quality metrics of bio-oil. Other studies have found that diversity often improves productivity and stability in agricultural and natural ecosystems. Our results provide further evidence that growing multispecies crops of microalgae may improve the production of high-quality biomass for bio-oil.


2020 ◽  
Vol 34 (10) ◽  
pp. 11723-11751 ◽  
Author(s):  
Oraléou Sangué Djandja ◽  
Zhicong Wang ◽  
Lei Chen ◽  
Liang Qin ◽  
Feng Wang ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 246-269 ◽  
Author(s):  
Nor‐Insyirah Syahira Abdul Latif ◽  
Mei Yin Ong ◽  
Saifuddin Nomanbhay

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 849
Author(s):  
Chen Hong ◽  
Zhiqiang Wang ◽  
Yanxiao Si ◽  
Yi Xing ◽  
Jian Yang ◽  
...  

In this study, penicillin residue (PR) was used to prepare bio-oil by hydrothermal liquefaction. The effects of homogeneous (organic acid and alkaline catalysts) and heterogeneous catalysts (zeolite molecular sieve) on the yield and properties of bio-oil were investigated. The results show that there are significant differences in the catalytic performance of the catalysts. The effect of homogeneous catalysts on the bio-oil yield was not significant, which only increased from 26.09 (no catalysts) to 31.44 wt.% (Na2CO3, 8 wt.%). In contrast, heterogeneous catalysts had a more obvious effect, and the oil yield reached 36.44 wt.% after adding 5 wt.% MCM-48. Increasing the amount of catalyst enhanced the yield of bio-oil, but excessive amounts of catalyst led to a secondary cracking reaction, resulting in a reduction in bio-oil. Catalytic hydrothermal liquefaction reduced the contents of heteroatoms (oxygen, mainly), slightly increased the contents of C and H in the bio-oil and increased the higher heating value (HHV) and energy recovery (ER) of bio-oil. FTIR and GC-MS analyses showed that the addition of catalysts was beneficial in increasing hydrocarbons and oxygen-containing hydrocarbons in bio-oil and reducing the proportion of nitrogen-containing substances. Comprehensive analyses of the distribution of aromatic, nitrogen-containing and oxygen-containing components in bio-oil were also performed. This work is beneficial for further research on the preparation of bio-oil by hydrothermal liquefaction of antibiotic fermentation residue.


Sign in / Sign up

Export Citation Format

Share Document