scholarly journals The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing

2014 ◽  
Vol 51 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Zhiqiang Gao ◽  
Qiuxian Wang ◽  
Xiaoming Cao ◽  
Wei Gao
Author(s):  
Colombo Roberto ◽  
Busetto Lorenzo ◽  
Meroni Michele ◽  
Rossini Micol ◽  
Panigada Cinzia

2020 ◽  
Author(s):  
Saeed Khabbazan ◽  
Ge Gao ◽  
Paul Vermunt ◽  
Susan Steele-Dunne ◽  
Jasmeet Judge ◽  
...  

<p>Vegetation Optical Depth (VOD) is directly related to Vegetation Water Content (VWC), which can be used in different applications including crop health monitoring, water resources management and drought detection. Moreover, VOD is used to account for the attenuating effect of vegetation in soil moisture retrieval using microwave remote sensing.</p><p>Commonly, to retrieve soil moisture and VOD from microwave remote sensing, VWC is considered to be vertically homogeneous and relatively static.  However, nonuniform vertical distribution of water inside the vegetation may lead to unrealistic retrievals in agricultural areas. Therefore, it is important to improve the understanding of the relation between vegetation optical depth and distribution of bulk vegetation water content during the entire growing season.</p><p>The goal of this study is to investigate the effect of different factors such as phenological stage, different crop elements and nonuniform distribution of internal vegetation water content on VOD. Backscatter data were collected every 15 minutes using a tower-based, fully polarimetric, L-band radar. The methodology of Vreugdenhil et al. [1] was adapted to estimate VOD from single-incidence angle backscatter data in each polarization.</p><p>In order to characterize the vertical distribution of VWC, pre-dawn destructive sampling was conducted three times a week for a full growing season. VWC could therefore be analyzed by constituent (leaf, stem, ear) or by height.</p><p>A temporal correlation analysis showed that the relation between VOD and VWC during the growing season is not constant. The assumed linear relationship is only valid during the vegetative growth stages for corn.  Furthermore, the sensitivity of VOD to various plant components (leaf, stem and ear) varies between phenological stages and depends on polarization.</p><p>Improved understanding of VOD can contribute to improved consideration of vegetation in soil moisture retrieval algorithms. More importantly, it is essential for the interpretation of VOD data in a wide range of vegetation monitoring applications.</p><p>[1] M. Vreugdenhil,W. A. Dorigo,W.Wagner, R. A. De Jeu, S. Hahn, andM. J. VanMarle, “Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 6, pp. 3513–3531, 2016.</p>


2013 ◽  
Vol 779-780 ◽  
pp. 1571-1575
Author(s):  
Chuan Lin ◽  
Zhao Ning Gong ◽  
Wen Ji Zhao

Quantitative estimation of vegetation water content with remote sensing technique is of great significance for vegetation physiological status and growth trend monitoring. It also provides a theoretical foundation for actual application of vegetation water content diagnosis using remote sensing images in Wild Duck Lake wetland. In this paper the NDVIs and SRs calculated from simulation WorldVeiw-2 curves can be used to model and predict canopy water content of typical emerged plant. The NDVIs and SRs involving the additional spectral bands of WorldView-2, such as the red-edge and near infrared regions of the electromagnetic spectrum, improve the prediction accuracy compared with the traditional NDVIs and SRs.


2011 ◽  
pp. 227-244 ◽  
Author(s):  
Colombo Roberto ◽  
Busetto Lorenzo ◽  
Meroni Michele ◽  
Rossini Micol ◽  
Panigada Cinzia

Sign in / Sign up

Export Citation Format

Share Document