shortwave infrared
Recently Published Documents


TOTAL DOCUMENTS

565
(FIVE YEARS 244)

H-INDEX

33
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 407
Author(s):  
Thomas De Kerf ◽  
Georgios Pipintakos ◽  
Zohreh Zahiri ◽  
Steve Vanlanduit ◽  
Paul Scheunders

In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900–1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. A normalized cross-correlation algorithm is used to identify four different corrosion minerals (goethite, magnetite, lepidocrocite and hematite), using reference spectra. A Fourier Transform Infrared spectrometer (FTIR) analysis of the scraped corrosion powders was used as a ground truth to validate the results obtained by the hyperspectral camera. This comparison shows that the HSI technique effectively detects the dominant mineral present in the samples. In addition, HSI can also accurately predict the changes in mineral composition that occur over time.


2022 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Young-Sun Son ◽  
Gilljae Lee ◽  
Bum Han Lee ◽  
Namhoon Kim ◽  
Sang-Mo Koh ◽  
...  

Numerous reports have successfully detected or differentiated carbonate minerals such as calcite and dolomite by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). However, there is a need to determine whether existing methods can differentiate magnesite from other carbonate minerals. This study proposes optimal band ratio combinations and new thresholds to distinguish magnesite, dolomite, and calcite using ASTER shortwave-infrared (SWIR) data. These were determined based on the spectral and chemical analysis of rock samples collected from Liaoning, China and Danchon, North Korea and the reflectance values from ASTER images. The results demonstrated that the simultaneous use of thresholds 2.13 and 2.015 for relative absorption band depths (RBDs) of (6 + 8)/7 and (7 + 9)/8, respectively, was the most effective for magnesite differentiation. The use of RBDs and band ratios to discriminate between dolomite and calcite was sufficiently effective. However, talc, tremolite, clay, and their mixtures with dolomite and calcite, which are commonly found in the study area, hampered the classification. The assessment of the ASTER band ratios for magnesite grade according to magnesium oxide content indicated that a band ratio of 5/6 was the most effective for this purpose. Therefore, this study proved that ASTER SWIR data can be effectively utilized for the identification and grade assessment of magnesite on a regional scale.


2021 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Samuel T. Thiele ◽  
Zakaria Bnoulkacem ◽  
Sandra Lorenz ◽  
Aurélien Bordenave ◽  
Niccolò Menegoni ◽  
...  

While uncrewed aerial vehicles are routinely used as platforms for hyperspectral sensors, their application is mostly confined to nadir imaging orientations. Oblique hyperspectral imaging has been impeded by the absence of robust registration and correction protocols, which are essential to extract accurate information. These corrections are especially important for detecting the typically small spectral features produced by minerals, and for infrared data acquired using pushbroom sensors. The complex movements of unstable platforms (such as UAVs) require rigorous geometric and radiometric corrections, especially in the rugged terrain often encountered for geological applications. In this contribution we propose a novel correction methodology, and associated toolbox, dedicated to the accurate production of hyperspectral data acquired by UAVs, without any restriction concerning view angles or target geometry. We make these codes freely available to the community, and thus hope to trigger an increasing usage of hyperspectral data in Earth sciences, and demonstrate them with the production of, to our knowledge, the first fully corrected oblique SWIR drone-survey. This covers a vertical cliff in the Dolomites (Italy), and allowed us to distinguish distinct calcitic and dolomitic carbonate units, map the qualitative abundance of clay/mica minerals, and thus characterise seismic scale facies architecture.


2021 ◽  
Vol 13 (24) ◽  
pp. 4986
Author(s):  
Stefanos Georganos ◽  
Angela Abascal ◽  
Monika Kuffer ◽  
Jiong Wang ◽  
Maxwell Owusu ◽  
...  

In the past two decades, Earth observation (EO) data have been utilized for studying the spatial patterns of urban deprivation. Given the scope of many existing studies, it is still unclear how very-high-resolution EO data can help to improve our understanding of the multidimensionality of deprivation within settlements on a city-wide scale. In this work, we assumed that multiple facets of deprivation are reflected by varying morphological structures within deprived urban areas and can be captured by EO information. We set out by staying on the scale of an entire city, while zooming into each of the deprived areas to investigate deprivation through land cover (LC) variations. To test the generalizability of our workflow, we assembled multiple WorldView-3 datasets (multispectral and shortwave infrared) with varying numbers of bands and image features, allowing us to explore computational efficiency, complexity, and scalability while keeping the model architecture consistent. Our workflow was implemented in the city of Nairobi, Kenya, where more than sixty percent of the city population lives in deprived areas. Our results indicate that detailed LC information that characterizes deprivation can be mapped with an accuracy of over seventy percent by only using RGB-based image features. Including the near-infrared (NIR) band appears to bring significant improvements in the accuracy of all classes. Equally important, we were able to categorize deprived areas into varying profiles manifested through LC variability using a gridded mapping approach. The types of deprivation profiles varied significantly both within and between deprived areas. The results could be informative for practical interventions such as land-use planning policies for urban upgrading programs.


2021 ◽  
Vol 13 (23) ◽  
pp. 4886
Author(s):  
Zhaoqiang Huang ◽  
Wenxuan Huang ◽  
Sheng Li ◽  
Bin Ni ◽  
Yalong Zhang ◽  
...  

According to historical information, more than 300 metal smelting enterprises have been in the southwest of Xiongan for 300 years; however, these polluting enterprises have been gradually closed with the increased intensity of environmental protection. In the paper, 264 soil samples were collected and analyzed in the range of 400 nm–2500 nm by the spectra vista corporation (SVC), and the spectral noise was smoothed by the Savitzky–Golay filter. In order to enhance the spectral differences and curve shapes, mathematical transformations, such as the standard normal variate (SNV), first-order differential (FD), second-order differential (SD), multiple scattering correction (MSC), and continuum removal (CR), were performed on the data, and the correlation between spectral transformation and contents of REEs was analyzed. Moreover, three machine learning models—partial least-squares (PLS), random forest (RF), back propagation neural network (BPNN)—were used to predict the contents of REEs. Experimental results prove that REEs are combined with spectral active substances, such as organic compounds, clay minerals, and iron oxide, and it is possible to determine the contents of REEs using the reflection spectrum. The R2 between the predicted values and measured contents reached 0.986 by using BPNN after FD transformation. More importantly, the predicted values basically agree with the actual situation for CASI/SASI airborne hyperspectral images, and this is an effective technique to obtain the contents of REEs in soil at the study area.


2021 ◽  
pp. 4208-4217
Author(s):  
Reem Sh. Hameed ◽  
Loay E. Georg ◽  
Baqer H. Sayyid

The Normalization Difference Vegetation Index (NDVI), for many years, was widely used in remote sensing for the detection of vegetation land cover. This index uses red channel radiances (i.e., 0.66 μm reflectance) and near-IR channel (i.e., 0.86 μm reflectance). In the heavy chlorophyll absorption area, the red channel is located, while in the high reflectance plateau of vegetation canopies, the Near-IR channel is situated. Senses of channels (Red & Near- IR) read variance depths over vegetation canopies. In the present study, a further index for vegetation identification is proposed. The normalized difference vegetation shortwave index (NDVSI) is defined as the difference between the cubic bands of Near- IR and Shortwave infrared radiation (SWIR) divided by their sums. The radiances or reflectances are included in this index from the Near-IR channel and WSIR2 channel (2.1 μm). The NDVSI is less sensitivite to atmospheric effects as compared to NDVI. By comparing the one NDVSI index with the two indexes (NDVI, SAVI) of vegetation cover, good correlations were found between NDVI  and NDVSI (R2=0.917) and between SAVI and NDVSI (R2=0.809. Accordingly, the proposed index can be taken into consideration as an independent vegetation index


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 509
Author(s):  
Hong Yu ◽  
Chenggui Gao ◽  
Jiang Zou ◽  
Wensheng Yang ◽  
Quan Xie

To develop and design an environmentally friendly, low-cost shortwave infrared (SWIR) photodetector (PD) material and extend the optical response cutoff wavelengths of existing silicon photodetectors beyond 1100 nm, high-performance silicon-compatible Mg2Si/Si PDs are required. First, the structural model of the Mg2Si/Si heterojunction was established using the Silvaco Atlas module. Second, the effects of the doping concentrations of Mg2Si and Si on the photoelectric properties of the Mg2Si/Si heterojunction PD, including the energy band, breakdown voltage, dark current, forward conduction voltage, external quantum efficiency (EQE), responsivity, noise equivalent power (NEP), detectivity, on/off ratio, response time, and recovery time, were simulated. At different doping concentrations, the heterojunction energy band shifted, and a peak barrier appeared at the conduction band of the Mg2Si/Si heterojunction interface. When the doping concentrations of Si and Mg2Si layer were 1017, and 1016 cm−3, respectively, the Mg2Si/Si heterojunction PD could obtain optimal photoelectric properties. Under these conditions, the maximum EQE was 70.68% at 800 nm, the maximum responsivity was 0.51 A/W at 1000 nm, the minimum NEP was 7.07 × 10−11 WHz–1/2 at 1000 nm, the maximum detectivity was 1.4 × 1010 Jones at 1000 nm, and the maximum on/off ratio was 141.45 at 1000 nm. The simulation and optimization result also showed that the Mg2Si/Si heterojunction PD could be used for visible and SWIR photodetection in the wavelength range from 400 to 1500 nm. The results also provide technical support for the future preparation of eco-friendly heterojunction photodetectors.


2021 ◽  
pp. 2101342
Author(s):  
Huixuan Gao ◽  
Yuzhang Liang ◽  
Rui Li ◽  
Hui Huang ◽  
Wei Peng

Sign in / Sign up

Export Citation Format

Share Document