scholarly journals Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran

2016 ◽  
Vol 53 (2) ◽  
pp. 183-205 ◽  
Author(s):  
Mehdi Azari ◽  
Amin Tayyebi ◽  
Marco Helbich ◽  
Mohsen Ahadnejad Reveshty
2018 ◽  
Vol 10 (8) ◽  
pp. 2878 ◽  
Author(s):  
Xiaoli Hu ◽  
Xin Li ◽  
Ling Lu

Land use and land cover change (LUCC) is an important issue in global environmental change and sustainable development, yet spatial simulation of LUCC remains challenging due to the land use system complexity. The cellular automata (CA) model plays a crucial role in simulating LUCC processes due to its powerful spatial computing power; however, the majority of current LUCC CA models are binary-state models that cannot provide more general information about the overall spatial pattern of LUCC. Moreover, the current LUCC CA models rarely consider background artificial irrigation in arid regions. Here, a multiple logistic-regression-based Markov cellular automata (MLRMCA) model and a multiple artificial-neural-network-based Markov cellular automata (MANNMCA) model were developed and applied to simulate complex land use evolutionary processes in an arid region oasis (Zhangye Oasis), constrained by water resources and environmental policy change, during the period 2000–2011. Results indicated that the MANNMCA model was superior to the MLRMCA model in simulated accuracy. Furthermore, combining the artificial neural network with CA more effectively captured the complex relationships between LUCC and a set of spatial driving variables. Although the MLRMCA model also showed some advantages, the MANNMCA model was more appropriate for simulating complex land use dynamics. The two integrated models were reliable, and could reflect the spatial evolution of regional LUCC. These models also have potential implications for land use planning and sustainable development in arid regions.


Artificial neural network (ANN) is initially used to forecast the solar insolation level and followed by the particle swarm optimisation (PSO) to optimise the power generation of the PV system based on the solar insolation level, cell temperature, efficiency of PV panel, and output voltage requirements. Genetic algorithm is a general-purpose optimization algorithm that is distinguished from conventional optimization techniques by the use of concepts of population genetics to guide the optimization search. Tabu search algorithm is a conceptually simple and an elegant iterative technique for finding good solutions to optimization problems. Simulated annealing algorithms appeared as a promising heuristic algorithm for handling the combinatorial optimization problems. Fuzzy logic algorithms set theory can be considered as a generation of the classical set theory. The artificial neural network (ANN)-based solar insolation forecast has shown satisfactory results with minimal error, and the generated PV power can be optimised significantly with the aids of the PSO algorithm.


Sign in / Sign up

Export Citation Format

Share Document