Response surface methodology for carbon dioxide reforming of natural gas

Author(s):  
Tahani S. Gendy ◽  
Seham A. El-Temtamy ◽  
Salwa A. Ghoneim ◽  
Radwa A. El-Salamony ◽  
Ashraf Y. El-Naggar ◽  
...  
2018 ◽  
Vol 4 (2) ◽  
pp. 248
Author(s):  
I Istadi ◽  
Nor Aishah Saidina Amin ◽  
Mohd Nizam Ahmad Sanusi

Optimization of Ni loading and operating conditions for carbon dioxide reforming of methane over NiO/CeO2 catalyst using response surface methodologyModelling and optimization of Carbon Dioxide Reforming of Methane (CORM) reaction over NiO/CeO2 catalyst were developed using Response Surface Methodology (RSM). Relationship between responses, i.e. CH, conversion, H2 and CO selectivities, and three independent variables, i.e. reactor temperature, CO2/CH4 ratio, and wt. % Ni in the CeO-supported catalyst, were presented as empirical mathematical models. The models showed a good fitting to the experimental data statistically. The NiO/CeO2 showed a potential catalyst for the CORM process, though some coking formations were found. The catalysts exhibited a promising catalytic performance with the unity H2/CO ratio in the product, high methane conversion, and low reverse water gas shift reaction. The reactor temperature, CO2/CH4 ratio, and wt. % Ni in the CeO2-supported catalyst being 840oC, 1, and 6.5%, respectively were suggested with respect to CH4 conversion, H2 and CO selectivity, and H2/CO ratio of 75.7%, 68.5%, 54.5%, and 1.03, respectively. Keywords: Carbon dioxide reforming of methane, NiO/CeO, catalyst, Response Surface Methodology AbstrakPermodelan dan optimisasi reaksi pembentukan kembali metana dengan karbondioksida (CORM) melalui katalis NiO/CeO2 telah dikembangkan dengan menggunakan Response Surface Methodology (RSM). Hubungan antara respon-respon (konversi CH, selektifitas H2 and CO) dengan tiga peubah tak bergantung (temperatur reaktor; rasio CO2/CH4, dan % berat Ni dalam katalis berpenyangga CeO) dinyatakan dalam model matematika empiris. Model empiris tersebut secara statistik menunjukkan korelasi yang baik terhadap data-data eksperimen.  NiO/CeO2 tersebut menunjukkan sebuah katalis yang berpotensi untuk proses CORM. Katalis tersebut menunjukkan kinerja katalitik yang menjanjikan dengan rasio H2/CO mendekati satu dalam produk, konversi metana yang tinggi, dan reaksi reverse water gas shift yang rendah. Temperatur reactor 840oC, rasio CO2/CH4, 1, dan 6.5 wt. % Ni adalah direkomendasikan dengan konversi CH4 75.7%, selektifitas H2 68.5%, selektifitas CO 54.5%, dan rasio H2/CO 1.03. Kata Kunci: Pembentukan kembali metana dengan karbondioksida, Katalis NiO/CeO2, Response Surface Methodology


2020 ◽  
Vol 20 (9) ◽  
pp. 5720-5724
Author(s):  
Cho Hwe Kim ◽  
Young Chul Kim

In this paper, combined steam-carbon dioxide reforming of methane (CSDRM) on a nickel-based catalyst is investigated by using response surface methodology (RSM). Models were developed based on central composite design (CCD), conducted on methane, carbon dioxide conversion, and H2/CO ratio with feed ratio, flow rate, and temperature. In Analysis of variance analysis (ANOVA), good agreement was shown between predicted data from RSM model and experimental data as well. This indicated, high adjusted R2 (R square, coefficient of determination), F-value over 0.75, and p-value less than 0.05. CH4 and CO2 conversion were considerably improved at higher reaction temperature, because of the endothermic nature of the CSDRM. Also, H2/CO ratio was affected by feed ratio. The minutiae of development of the model, testing, etc. is presented in this study.


2020 ◽  
pp. 146808742094590
Author(s):  
Homayoun Boodaghi ◽  
Mir Majid Etghani ◽  
Korosh Sedighi

Today, the demand for higher output efficiencies, lower fuel consumption, and ever reduced emissions has been rising. Due to its availability, one promising alternative is the applying of hydrogen in internal combustion engines. In this study, the initial efforts concentrated on combine relationships of input and output parameters of hydrogen compressed natural gas spark-ignition engine. The quadratic regression models were conducted for all six responses: torque, carbon monoxide, brake-specific fuel consumption, methane, nitrogen oxides, and total hydrocarbon through response surface methodology and tested for adequacy by analysis of variance. The multi-objective desirability approach employed for the optimization of input variables, namely, the hydrogen compressed natural gas ratio, excess air ratio ( λ), and ignition timing ( θi). Also, two factors, that is, manifold absolute pressure and engine speed, were fixed at 105 kPa and 1600 r/min, respectively. Results indicate that the optimal independent input factors are equal to λ of 1.178, hydrogen compressed natural gas ratio of 25.98%, and θi of 18 °CA before top dead center. Also, the optimal combination of responses is as follows: brake-specific fuel consumption of 219.334 g/kWh, the torque of 395 N m, 30.189 g/kWh for nitrogen oxides, carbon monoxide equal to 5.093 g/kWh, total hydrocarbon of 0.633 g/kWh, and 0.572 g/kWh for methane. This study provided the significance of response surface methodology as an attractive technique for investigators for modeling. In this regard, the response surface methodology modeling and multi-objective desirability approach can be utilized to predict the emission and performance characteristics of the hydrogen compressed natural gas engines minutely.


Sign in / Sign up

Export Citation Format

Share Document