scholarly journals Study of the effects of hydraulic fractures on gas and water flow in shale gas reservoirs

Author(s):  
Yujin Wan ◽  
Zhiye Chen ◽  
Weijun Shen ◽  
Zexi Kuang ◽  
Xiaohua Liu ◽  
...  
2009 ◽  
Author(s):  
Xu Zhang ◽  
Changan Du ◽  
Franz Deimbacher ◽  
Martin Crick ◽  
Arvind Harikesavanallur

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1634 ◽  
Author(s):  
Juhyun Kim ◽  
Youngjin Seo ◽  
Jihoon Wang ◽  
Youngsoo Lee

Most shale gas reservoirs have extremely low permeability. Predicting their fluid transport characteristics is extremely difficult due to complex flow mechanisms between hydraulic fractures and the adjacent rock matrix. Recently, studies adopting the dynamic modeling approach have been proposed to investigate the shape of the flow regime between induced and natural fractures. In this study, a production history matching was performed on a shale gas reservoir in Canada’s Horn River basin. Hypocenters and densities of the microseismic signals were used to identify the hydraulic fracture distributions and the stimulated reservoir volume. In addition, the fracture width decreased because of fluid pressure reduction during production, which was integrated with the dynamic permeability change of the hydraulic fractures. We also incorporated the geometric change of hydraulic fractures to the 3D reservoir simulation model and established a new shale gas modeling procedure. Results demonstrate that the accuracy of the predictions for shale gas flow improved. We believe that this technique will enrich the community’s understanding of fluid flows in shale gas reservoirs.


2021 ◽  
Author(s):  
Hamidreza Hamdi ◽  
Hamid Behmanesh ◽  
Christopher R. Clarkson

Abstract Hydraulic fracture/reservoir properties and fluid-in-place can be quantified by using rate-transient analysis (RTA) techniques applied to flow rates/pressures gathered from multi-fractured horizontal wells (MFHWs) completed in unconventional reservoirs. These methods are commonly developed for the analysis of production data from single wells without considering communication with nearby wells. However, in practice, wells drilled from the same pad can be in strong hydraulic communication with each other. This study aims to develop the theoretical basis for analyzing production data from communicating MFHWs completed in single-phase shale gas reservoirs. A simple and practical semi-analytical method is developed to quantify the communication between wells drilled from the same pad by analyzing online production data from the individual wells. This method is based on the communicating tanks model and employs the concepts of macroscopic material balance and the succession of pseudo-steady states. A set of nonlinear ordinary differential equations (ODEs) are generated and solved simultaneously using the efficient Adams-Bashforth-Moulton algorithm. The accuracy of the solutions is verified against robust numerical simulation. In the first example provided, a MFHW well-pair is presented where the wells are communicating through primary hydraulic fractures with different communication strengths. In the subsequent examples, the method is extended to consider production data from a three-well and a six-well pad with wine-rack-style completions. The developed model is flexible enough to account for asynchronous wells that are producing from distinct reservoir blocks with different fracture/rock properties. For all the studied cases, the semi-analytical method closely reproduces the results of fully numerical simulation. The results demonstrate that, in some cases, when new wells start to produce, the production rates of existing wells can drop significantly. The amount of productivity loss is a direct function of the communication strengths between the wells. The new method can accurately quantify the communication strength between wells through transmissibility multipliers between the hydraulic fractures that are adjusted to match individual well production data. In this study, a new simple and efficient semi-analytical method is presented that can be used to analyze online production data from multiple wells drilled from a pad simultaneously with minimal computation time. The main advantage of the developed method is its scalability, where additional wells can be added to the system very easily.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5899
Author(s):  
Kaixuan Qiu ◽  
Heng Li

Shale gas reservoirs are typically developed by multistage, propped hydraulic fractures. The induced fractures have a complex geometry and can be represented by a high permeability region near each fracture, also called stimulated region. In this paper, a new integrative analytical solution coupled with gas adsorption, non-Darcy flow effect is derived for shale gas reservoirs. The modified pseudo-pressure and pseudo-time are defined to linearize the nonlinear partial differential equations (PDEs) and thus the governing PDEs are transformed into ordinary differential equations (ODEs) by integration, instead of the Laplace transform. The rate vs. pseudo-time solution in real-time space can be obtained, instead of using the numerical inversion for Laplace transform. The analytical model is validated by comparison with the numerical model. According to the fitting results, the calculation accuracy of analytic solution is almost 99%. Besides the computational convenience, another advantage of the model is that it has been validated to be feasible to estimate the pore volume of hydraulic region, stimulated region, and matrix region, and even the shape of regions is irregular and asymmetrical for multifractured horizontal wells. The relative error between calculated volume and given volume is less than 10%, which meets the engineering requirements. The model is finally applied to field production data for history matching and forecasting.


SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1523-1542 ◽  
Author(s):  
Lijun Liu ◽  
Yongzan Liu ◽  
Jun Yao ◽  
Zhaoqin Huang

Summary Significant conductivity losses of both propped hydraulic fractures and unpropped natural fractures are widely observed by laboratory experiments and field studies in shale-gas reservoirs. Previous studies have not well-considered the effects of dynamic fracture properties, which limit the accurate prediction of well performance and stress evolution. In this study, an efficient coupled flow and geomechanics model is proposed to characterize the dynamic fracture properties and examine their effects on well performance and stress evolution in complex fractured shale-gas reservoirs. In our proposed model, a unified compositional model with nonlinear transport mechanisms is used to accurately describe multiphase flow in shale formations. The embedded discrete fracture model (EDFM) is used to explicitly model the complex fracture networks. Different fracture constitutive models are implemented to describe the dynamic properties of hydraulic fractures and natural fractures, respectively. The finite-volume method (FVM) and finite-element method (FEM) are used for the space discretization of flow and geomechanics equations, respectively, and the coupled problem is solved by the fixed-stress split iterative method. The coupled model is validated against classical analytical solutions. After that, the proposed model is used to investigate the effects of hydraulic-fracture and natural-fracture properties on production behavior as well as pressure and stress evolution of shale-gas reservoirs. With the dynamic fracture properties incorporated, our model can predict the well production more accurately, and provide more realistic stress evolution that is essential for the design and optimization of refracturing and infill-well drilling.


Sign in / Sign up

Export Citation Format

Share Document