Fuzzy based incremental conductance algorithm stabilized by an optimal integrator for a photovoltaic system under varying operating conditions

Author(s):  
Noureddine Bouarroudj ◽  
Boualam Benlahbib ◽  
Yehya Houam ◽  
Moussa Sedraoui ◽  
Vicente FeliuBatlle ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jehun Hahm ◽  
Hyoseok Kang ◽  
Jaeho Baek ◽  
Heejin Lee ◽  
Mignon Park

This paper proposes an integrated photovoltaic (PV) and proton exchange membrane fuel cell (PEMFC) system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond) algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT) is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS) MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.


Sign in / Sign up

Export Citation Format

Share Document