Characteristic analysis of thermal energy storage system using synthetic oil as a heat transfer fluid: techno-economic modeling and LAB scale demonstration

Author(s):  
Ram Kunwer ◽  
Shyam Pandey ◽  
Govind Pandey
2018 ◽  
Vol 22 (2) ◽  
pp. 973-978 ◽  
Author(s):  
Rengarajan Ravi ◽  
Karunakaran Rajasekaran

This paper addresses an experimental investigation of a solar based thermal energy storage system to meet current energy demand especially for milk industry in Tamil Nadu, India. A solar based energy storage system has been designed to study the heat transfer characteristics of paraffin wax where it is filled in the middle tube, with cold heat transfer fluid flowing outer tube, inner tube, and both tubes at a time during solidification process in a horizontal triple concentric heat exchanger. In this study, main concentrations are temperature distributions in the energy storage materials such as paraffin wax during solidification process and total solidification time. Three heat recovery methods were used to solidify paraffin wax from the inside tube, outside tube, and both tubes methods to improve the heat transfer between heat transfer fluid and phase change materials. The experiment has been performed for different heat transfer fluid mass-flow rates and different inlet temperatures and predicted results shows that solidification time is reduced.


Author(s):  
Mahboobe Mahdavi ◽  
Saeed Tiari ◽  
Vivek Pawar

In the current study, the thermal characteristics of a low-temperature latent heat thermal energy storage system are studied numerically. A cylinder container encloses a paraffin-based PCM, which is heated via a heat transfer fluid passing through a tube at the center. Heat pipes are incorporated into the PCM to enhance the heat transfer rate between the heat transfer fluid and the PCM. In addition, high thermal conductive nanoparticles are dispersed into the PCM to increase its thermal conductivity. A transient model is developed using ANSYS-FLUENT to simulate the charging process and study the impact of heat pipes and nanoparticles on the performance of the system. The effects of different parameters, such as the quantities of heat pipes as well as the nanoparticles types and volume fraction, are investigated.


Author(s):  
Rozina N. Nalbandian ◽  
Karen U. Girgis ◽  
Benjamin T. Kong ◽  
Ulyses Aguirre ◽  
Adrian Gil C. Victorio ◽  
...  

Abstract In this paper, Computational Fluid Dynamics (CFD) is employed to investigate the heat transfer characteristics of Reverse Osmosis Concentrate (ROC) as an alternative, low-cost thermal energy storage medium. Thermal energy storage is a critical component for increasing efficiency and dispatchability of solar thermal and combined heat and power plants. The byproduct of water desalination, ROC, is classified as an industrial waste by the U.S. Environmental Protection Agency as it has negative effects on vegetation and sea-life. Currently, ROC disposal includes deep-well injection, surface discharge to rivers, discharge to the ocean, and evaporation ponds. The composition and thermal properties of ROC salt vary depending on the original source of feedwater. Transient models are utilized to understand the heat transfer between the heat transfer fluid and storage fluid (i.e., ROC) over time. This simulation also provides valuable information in determining the optimal operating conditions of the thermal energy storage system. This information will be used in conjunction with a cost analysis, focused on the transportation, processing and containment cost of the energy storage, that aims to determine the economic feasibility of ROC technology in large scale, commercial applications.


2020 ◽  
Vol 12 (4) ◽  
pp. 168781402090574
Author(s):  
Ahlem Bouguila ◽  
Rachid Said

Thermal energy storage has been considered as an important solution to extend the operation of a concentrated solar power plant by meeting the peak demand of power in the time period from sunset to night, or providing power during cloudy days. Discussed in this work is a thermocline thermal energy storage system with a solid filler material. For this reason, a one-dimensional single-phase model is developed and validated with experimental data to investigate the thermal behavior of such thermal energy storage. The described model is further applied to design a 100-kWhth thermocline thermal energy storage system with a packed bed of quartzite rocks and oil as the heat transfer fluid. A synthetic oil (Therminol VP-1) and a vegetable oil (rapeseed oil) are the two candidates to be used as the heat transfer fluid. Their thermal and economic performances are calculated and compared. The results show that rapeseed oil is more cost-effective than Therminol VP-1 offering a lower energy cost (€18.3/kWhth vs €92.925/kWhth for Therminol VP-1).


Sign in / Sign up

Export Citation Format

Share Document