Does Charter School Mission Affect Survival and Growth? An Addendum to White and Huang’s Census of Charter School Foci and Models1

2021 ◽  
pp. 1-6
Author(s):  
Robert Maranto ◽  
M. Danish Shakeel
2021 ◽  
Vol 657 ◽  
pp. 123-133
Author(s):  
JR Hancock ◽  
AR Barrows ◽  
TC Roome ◽  
AS Huffmyer ◽  
SB Matsuda ◽  
...  

Reef restoration via direct outplanting of sexually propagated juvenile corals is a key strategy in preserving coral reef ecosystem function in the face of global and local stressors (e.g. ocean warming). To advance our capacity to scale and maximize the efficiency of restoration initiatives, we examined how abiotic conditions (i.e. larval rearing temperature, substrate condition, light intensity, and flow rate) interact to enhance post-settlement survival and growth of sexually propagated juvenile Montipora capitata. Larvae were reared at 3 temperatures (high: 28.9°C, ambient: 27.2°C, low: 24.5°C) for 72 h during larval development, and were subsequently settled on aragonite plugs conditioned in seawater (1 or 10 wk) and raised in different light and flow regimes. These juvenile corals underwent a natural bleaching event in Kāne‘ohe Bay, O‘ahu, Hawai‘i (USA), in summer 2019, allowing us to opportunistically measure bleaching response in addition to survivorship and growth. This study demonstrates how leveraging light and flow can increase the survivorship and growth of juvenile M. capitata. In contrast, larval preconditioning and substrate conditioning had little overall effect on survivorship, growth, or bleaching response. Importantly, there was no optimal combination of abiotic conditions that maximized survival and growth in addition to bleaching tolerances. This study highlights the ability to tailor sexual reproduction for specific restoration goals by addressing knowledge gaps and incorporating practices that could improve resilience in propagated stocks.


2021 ◽  
Vol 657 ◽  
pp. 59-71
Author(s):  
BA Beckley ◽  
MS Edwards

The forest-forming giant kelp Macrocystis pyrifera and the communities it supports have been decreasing across their native ranges in many parts of the world. The sudden removal of giant kelp canopies by storms increases space and light for the colonization by understory macroalgae, such as Desmarestia herbacea, which can inhibit M. pyrifera recovery and alter local community composition. Understanding the mechanisms by which algae such as D. herbacea interact with M. pyrifera can provide insight into patterns of kelp forest recovery following these disturbances and can aid in predicting future community structure. This study experimentally tested the independent and combined effects of two likely competitive mechanisms by which D. herbacea might inhibit recovery of M. pyrifera in the Point Loma kelp forest in San Diego, California (USA). Specifically, we conducted field experiments to study the individual and combined effects of shade and scour by D. herbacea on the survival of M. pyrifera microscopic life stages, and the recruitment, survival, and growth of its young sporophytes. Our results show that scour had the strongest negative effect on the survival of M. pyrifera microscopic life stages and recruitment, but shade and scour both adversely affected survival and growth of these sporophytes as they grew larger. Canopy-removing storms are increasing in frequency and intensity, and this change could facilitate the rise of understory species, like D. herbacea, which might alter community succession and recovery of kelp forests.


2008 ◽  
Vol 23 (4) ◽  
pp. 881-887 ◽  
Author(s):  
Krzysztof Kupren ◽  
Dariusz Kucharczyk ◽  
Maja Prusińska ◽  
Sławomir Krejszeff ◽  
Katarzyna Targońska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document