scholarly journals The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka (Oryzias latipes)

Epigenetics ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 483-498 ◽  
Author(s):  
Xuegeng Wang ◽  
Ramji Kumar Bhandari
Development ◽  
1972 ◽  
Vol 28 (2) ◽  
pp. 385-395
Author(s):  
Noriyuki Satoh ◽  
Nobuo Egami

Mitotic and meiotic activities of germ cells during early development in the medaka, Oryzias latipes, are dealt with in this report. Primordial germ cells were obviously distinguishable from somatic cells 3 days after fertilization and began to proliferate about 7 days after fertilization. The mean number of primordial germ cells increased during a period of 7–10 days after fertilization, reaching about 90 immediately before hatching. Newly hatched fry could be classified into two types according to the number and the nucleic activity of germ cells in the gonadal rudiment. One type consisted of fry containing about 100 germ cells and no cells in the meiotic prophase. In the other type of fry the number of germ cells increased by mitotic divisions and some of the cells began to enter into the meiotic prophase. During the course of further development the fry of the former type differentiated into males and the latter into females. Therefore it can be concluded that the morphological sex differentiation of germ cells occurs at the time of hatching. However, no sexual differences in the histological structure of somatic elements in the gonad are observable at that time.


2013 ◽  
Vol 30 (3) ◽  
pp. 95-100
Author(s):  
Yoshiyuki Seki ◽  
Naoki Okashita

2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


Sign in / Sign up

Export Citation Format

Share Document