Stochastic dynamics of veering modes in a symmetric coupled system

Author(s):  
P. Likhit ◽  
K. Vijayan
Author(s):  
Subramanian Ramakrishnan ◽  
Collin Lambrecht ◽  
Connor Edlund

Vibration energy harvesting seeks to exploit the energy of ambient random vibration for power generation, particularly in small scale devices. Piezoelectric transduction is often used as a conversion mechanism in harvesting and the random excitation is typically modeled as a Brownian stochastic process. However, non-Brownian excitations are of potential interest, particularly in the nonequilibrium regime of harvester dynamics. In this work, we investigate the averaged power output of a generic piezoelectric harvester driven by Brownian as well as (non-Brownian) Lévy stable excitations both in the linear and the Duffing regimes. First, a coupled system of stochastic differential equations that model the electromechanical system are presented. Numerical simulation results (based on the Euler-Maruyama scheme) that show the average power output from the system under Brownian and Lévy excitations are presented for the cases where the mechanical degree of freedom behaves as a linear as well as a Duffing oscillator. The results demonstrate that Lévy excitations result in higher expectation values of harvested power. In particular, increasing the noise intensity leads to significant increase in power output in the Levy case when compared with Brownian excitations.


2017 ◽  
Author(s):  
Debasish Roy ◽  
G. Visweswara Rao
Keyword(s):  

10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6269-6280
Author(s):  
Hassan Gadain

In this work, combined double Laplace transform and Adomian decomposition method is presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the convergence proof of the double Laplace transform decomposition method applied to our problem. By using one example, our proposed method is illustrated and the obtained results are confirmed.


Author(s):  
Sauro Succi

Dense fluids and liquids molecules are in constant interaction; hence, they do not fit into the Boltzmann’s picture of a clearcut separation between free-streaming and collisional interactions. Since the interactions are soft and do not involve large scattering angles, an effective way of describing dense fluids is to formulate stochastic models of particle motion, as pioneered by Einstein’s theory of Brownian motion and later extended by Paul Langevin. Besides its practical value for the study of the kinetic theory of dense fluids, Brownian motion bears a central place in the historical development of kinetic theory. Among others, it provided conclusive evidence in favor of the atomistic theory of matter. This chapter introduces the basic notions of stochastic dynamics and its connection with other important kinetic equations, primarily the Fokker–Planck equation, which bear a complementary role to the Boltzmann equation in the kinetic theory of dense fluids.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1639
Author(s):  
Abdelkrim Aharmouch ◽  
Brahim Amaziane ◽  
Mustapha El Ossmani ◽  
Khadija Talali

We present a numerical framework for efficiently simulating seawater flow in coastal aquifers using a finite volume method. The mathematical model consists of coupled and nonlinear partial differential equations. Difficulties arise from the nonlinear structure of the system and the complexity of natural fields, which results in complex aquifer geometries and heterogeneity in the hydraulic parameters. When numerically solving such a model, due to the mentioned feature, attempts to explicitly perform the time integration result in an excessively restricted stability condition on time step. An implicit method, which calculates the flow dynamics at each time step, is needed to overcome the stability problem of the time integration and mass conservation. A fully implicit finite volume scheme is developed to discretize the coupled system that allows the use of much longer time steps than explicit schemes. We have developed and implemented this scheme in a new module in the context of the open source platform DuMu X . The accuracy and effectiveness of this new module are demonstrated through numerical investigation for simulating the displacement of the sharp interface between saltwater and freshwater in groundwater flow. Lastly, numerical results of a realistic test case are presented to prove the efficiency and the performance of the method.


Sign in / Sign up

Export Citation Format

Share Document