scholarly journals Glacial geomorphology of the central sector of the Cordilleran Ice Sheet, Northern British Columbia, Canada

2021 ◽  
pp. 1-15
Author(s):  
Helen E. Dulfer ◽  
Martin Margold
1988 ◽  
Vol 25 (6) ◽  
pp. 938-941 ◽  
Author(s):  
John J. Clague ◽  
Ian R. Saunders ◽  
Michael C. Roberts

New radiocarbon dates on wood from two exposures in Chilliwack valley, southwestern British Columbia, indicate that this area was ice free and locally forested 16 000 radiocarbon years ago. This suggests that the Late Wisconsinan Cordilleran Ice Sheet reached its maximum extent in this region after 16 000 years BP. The Chilliwack valley dates are the youngest in British Columbia that bear on the growth of the Cordilleran Ice Sheet.


2021 ◽  
Vol 273 ◽  
pp. 107247
Author(s):  
James K. Russell ◽  
Benjamin R. Edwards ◽  
Marie Turnbull ◽  
Lucy A. Porritt

1994 ◽  
Vol 40 (134) ◽  
pp. 205-210
Author(s):  
John J. Clague ◽  
S. G. Evans

AbstractGrand Pacific and Melbern Glaciers, two of the largest valley glaciers in British Columbia, have decreased over 50% in volume in the last few hundred years (total ice loss = 250–300km3). Melbern Glacier has thinned 300–600 m and retreated 15 km during this period; about 7 km of this retreat occurred between the mid-1970s and 1987, accompanied by the formation of one of the largest presently existing, ice-dammed lakes on Earth. Grand Pacific Glacier, which terminates in Tarr Inlet at the British Columbia–Alaska boundary, retreated 24 km between 1879 and 1912. This rapid deglaciation has destabilized adjacent mountain slopes and produced spectacular ice-marginal land forms. The sediments and land forms produced by historic deglaciation in Melbern-Grand Pacific valley are comparable, both in style and scale, to those associated with the decay of the Cordilleran ice sheet at the end of the Pleistocene (c. 14–10 ka BP). Rates of historic and terminal Pleistocene deglaciation also may be comparable.


2007 ◽  
Vol 44 (4) ◽  
pp. 445-457 ◽  
Author(s):  
Jan M Bednarski ◽  
I Rod Smith

Mapping the surficial geology of the Trutch map area (NTS 94G) provides new data on the timing of continental and montane glaciations along the Foothills of northeastern British Columbia. Striated surfaces on mountain crests were dated to the Late Wisconsinan substage by cosmogenic dating. The striations were produced by eastward-flowing ice emanating from the region of the Continental Divide. This ice was thick enough to cross the main ranges and overtop the Rocky Mountain Foothill summits at 2000 m above sea level (asl). It is argued here that such a flow, unhindered by topography, could only have been produced by the Cordilleran Ice Sheet and not by local cirque glaciation. During this time, the Cordilleran Ice Sheet dispersed limestone and schist erratics of western provenance onto the plains beyond the mountain front. Conversely, the Laurentide Ice Sheet did not reach its western limit in the Foothills until after Cordilleran ice retreated from the area. During its maximum, the Laurentide ice penetrated the mountain valleys up to 17 km west of the mountain front, and deposited crystalline erratics from the Canadian Shield as high as 1588 m asl along the Foothills. In some valleys a smaller montane advance followed the retreat of the Laurentide Ice Sheet.


2016 ◽  
Vol 85 (3) ◽  
pp. 409-429 ◽  
Author(s):  
Adrian Scott Hickin ◽  
Olav B. Lian ◽  
Victor M. Levson

Geomorphic, stratigraphic and geochronological evidence from northeast British Columbia (Canada) indicates that, during the late Wisconsinan (approximately equivalent to marine oxygen isotope stage [MIS] 2), a major lobe of western-sourced ice coalesced with the northeastern-sourced Laurentide Ice Sheet (LIS). High-resolution digital elevation models reveal a continuous 75 km-long field of streamlined landforms that indicate the ice flow direction of a major northeast-flowing lobe of the Cordilleran Ice Sheet (CIS) or a montane glacier (>200 km wide) was deflected to a north-northwest trajectory as it coalesced with the retreating LIS. The streamlined landforms are composed of till containing clasts of eastern provenance that imply that the LIS reached its maximum extent before the western-sourced ice flow crossed the area. Since the LIS only reached this region in the late Wisconsinan, the CIS/montane ice responsible for the streamlined landforms must have occupied the area after the LIS withdrew. Stratigraphy from the Murray and Pine river valleys supports a late Wisconsinan age for the surface landforms and records two glacial events separated by a non-glacial interval that was dated to be of middle Wisconsinan (MIS 3) age.


Sign in / Sign up

Export Citation Format

Share Document