late wisconsinan
Recently Published Documents


TOTAL DOCUMENTS

386
(FIVE YEARS 7)

H-INDEX

41
(FIVE YEARS 1)

2021 ◽  
pp. 1-20
Author(s):  
Joshua D. Valentino ◽  
Lewis A. Owen ◽  
James A. Spotila ◽  
Jason M. Cesta ◽  
Marc W. Caffee

Abstract Geomorphic mapping, landform and sediment analysis, and cosmogenic 10Be and 36Cl ages from erratics, moraine boulders, and glacially polished bedrock help define the timing of the Wisconsinan glaciations in the Chugach Mountains of south-central Alaska. The maximum extent of glaciation in the Chugach Mountains during the last glacial period (marine isotope stages [MIS] 5d through 2) occurred at ~50 ka during MIS 3. In the Williwaw Lakes valley and Thompson Pass areas of the Chugach Mountains, moraines date to ~26.7 ± 2.4, 25.4 ± 2.4, 18.8 ± 1.6, 19.3 ± 1.7, and 17.3 ± 1.5 ka, representing times of glacial retreat. These data suggest that glaciers retreated later in the Chugach Mountain than in other regions of Alaska. Reconstructed equilibrium-line altitude depressions range from 400 to 430 m for late Wisconsinan glacial advances in the Chugach Mountains, representing a possible temperature depression of 2.1–2.3°C. These reconstructed temperature depressions suggest that climate was warmer in this part of Alaska than in many other regions throughout Alaska and elsewhere in the world during the global last glacial maximum.


2020 ◽  
Author(s):  
Riley Mulligan ◽  
◽  
Andy F. Bajc ◽  
Abigail K. Burt

2019 ◽  
Vol 60 (80) ◽  
pp. 100-114
Author(s):  
Jasper Knight

AbstractLate Wisconsinan glacial sediments, exposed on Whidbey Island and Camano Island, Puget Sound (Washington State, USA), were deposited in a proglacial shallow marine/outwash environment during northward retreat of the Puget Lobe of the Cordilleran ice sheet. Sediments mainly comprise massive and cross-bedded sand and gravels, and rhythmically-bedded clay and silt/fine sand couplets, interbedded with diamictons that were deposited by a range of mass flows of different viscosities. Although sediment stratigraphy and ice advance–retreat patterns are well established for the Puget Lobe, brittle and ductile deformation structures within, and separating, these sediment units are less well understood. These structures record the nature of ice–bed interactions taking place in subglacial and proglacial environments. This study examines evidence for these processes and environments. Key deformation structures identified include open to overturned folds, normal and reverse faults, clastic dikes and hydrofractures and passive-loading structures. Evidence for coeval development of ductile and brittle deformation structures shows the close relationship between porewater changes, sediment rheology and sediment system responses to changes in strain caused by ice–bed interactions.


2019 ◽  
Vol 90 (6) ◽  
pp. 2250-2261 ◽  
Author(s):  
Audrey C. Price ◽  
Edward W. Woolery ◽  
Ronald C. Counts ◽  
Roy B. Van Arsdale ◽  
Daniel Larsen ◽  
...  

ABSTRACT The New Madrid seismic zone of the central United States is an intraplate seismic zone with blind structures that are not seismically active but may pose seismic hazards. The Joiner ridge fault (JRF) is the 35‐kilometer‐long east‐bounding fault of the Joiner ridge blind horst located in eastern Arkansas ∼50  km northwest of Memphis, Tennessee. Shallow S‐wave (SH‐mode) seismic reflection profiles, continuous cores, and radiometric dating of Quaternary alluvium across the JRF reveal down‐to‐the‐east reverse faulting and folding of Eocene strata and overlying Quaternary Mississippi River alluvium. The base of the Quaternary alluvium has an age of 20.3 ka and is vertically displaced 12 m, resulting in an average slip rate of 0.6±0.1  mm/yr over the past 20.3 ka. The overlying upper Wisconsinan and Holocene alluvial facies are also displaced by the JRF. These facies increase in thickness across the JRF and were used to calculate late Wisconsinan and Holocene slip histories. The JRF slipped 7 m between 20.3 and 17.5 ka, 3 m between 12.3 and 11.5 ka, and 2 m between 11.5 and 8.9 ka. No apparent slip occurred on the JRF within the last 8.9 ka. This research illustrates that slip has been intermittent and that slip magnitudes on the JRF diminished through the late Wisconsinan and early Holocene.


2018 ◽  
Vol 55 (12) ◽  
pp. 1324-1338 ◽  
Author(s):  
Gregory M.D. Hartman ◽  
John J. Clague ◽  
René W. Barendregt ◽  
Alberto V. Reyes

In the past, researchers have disagreed over the maximum extent of the Cordilleran Ice Sheet in the Peace River valley during the Late Wisconsinan. Some workers argued that Cordilleran ice reached beyond the Rocky Mountains and briefly coalesced with the Laurentide Ice Sheet on the westernmost Interior Plains. In contrast, others asserted that Cordilleran ice did not reach beyond the eastern front of the Rocky Mountains. Stratigraphic interpretation of three sections within a Middle Wisconsinan paleovalley and re-examination of a previously published regional stratigraphic framework show that western-sourced ice (likely the Cordilleran Ice Sheet) extended east of the mountain front during the Late Wisconsinan, prior to the incursion of the Laurentide Ice Sheet into the area. This conclusion has implications for Cordilleran Ice Sheet reconstruction and modelling, and provides insight into the interactions between the Cordilleran and Laurentide ice sheets during the last glaciation.


Sign in / Sign up

Export Citation Format

Share Document