Contributions of nonlinear mixed convection for enhancing the thermal efficiency of Eyring-Powell nanoparticles for periodically accelerated bidirectional flow

Author(s):  
Samaira Aziz ◽  
Nasir Ali ◽  
Iftikhar Ahmad ◽  
Umar F. Alqsair ◽  
Sami Ullah Khan
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wubshet Ibrahim ◽  
Chaluma Zemedu

In this paper, two-dimensional steady laminar boundary layer flow of a nonlinear mixed convection flow of micropolar nanofluid with Soret and magnetic field effect over a nonisothermal sphere is evaluated. The mathematical formulation for the flow problem has been made with appropriate similarity transformation and dimensionless variables, and the main nonlinear boundary value problems were reduced into mixed high-order nonlinear ordinary differential equations. Solution for velocity, microrotation, temperature, and concentration has been obtained numerically. The equations were calculated using method bvp4c from Matlab software for various quantities of main parameters. The effects of various parameters on skin friction coefficient f″0, wall duo stress coefficient -G′0, and convection mass transfer coefficient -Φ′0 are analysed and presented through the graphs and tables. The convergence test has been maintained. For the number of points greater than the suitable mesh number of points, the precision is not influenced but the set time is increased. Moreover, a comparison with a previous paper, obtainable in the literature, has been presented and an excellent agreement is obtained. The findings indicate that an increase in the values of nonisothermal parameters (m, P), magnetic Ma, thermal and solutal nonlinear convection (λ, s) parameter, and Soret number is to enhance the temperature difference between the boundary layer and ambient fluid to diffuse which increases the velocity profile f′ζ and their boundary layer thicknesses near the surface of the sphere.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Tasawar Hayat ◽  
Ikram Ullah ◽  
Ahmed Alsaedi ◽  
Bashir Ahamad

This paper addresses nonlinear mixed convection flow due to Riga plate with double stratification. Heat transfer analysis is reported for heat generation/absorption and nonlinear thermal radiation. Physical problem is mathematically modeled and nonlinear system of partial differential equations is achieved. Transformations are then utilized to obtain nonlinear system of ordinary differential equations. Homotopic technique is utilized for the solution procedure. Graphical descriptions for velocity, temperature, and concentration distributions are captured and argued for several set of physical variables. Features of skin friction and Nusselt and Sherwood numbers are also illustrated. Our computed results indicate that the attributes of radiation and temperature ratio variables enhance the temperature distribution. Moreover, the influence of buoyancy ratio and modified Hartmann number has revers effects on rate of heat transfer.


2018 ◽  
Vol 382 (31) ◽  
pp. 2017-2026 ◽  
Author(s):  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
T. Hayat ◽  
M. Imran Khan ◽  
A. Alsaedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document