Squeeze film characteristics of conical bearings with combined effects of piezo-viscous dependency and non-Newtonian couple stresses

2016 ◽  
Vol 10 (3) ◽  
pp. 126-130 ◽  
Author(s):  
Neminath B. Naduvinamani ◽  
A. Siddangouda ◽  
Ayyappa G. Hiremath
2015 ◽  
Vol 67 (6) ◽  
pp. 564-571 ◽  
Author(s):  
M. Daliri ◽  
D. Jalali-Vahid

Purpose – The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by piezo – viscous couple stress lubricant with pressure-dependent viscosity variation. Design/methodology/approach – Based upon the Stokes couple stress theory, Barus viscosity-pressure dependency relation and Christensen rough surfaces model, squeeze film characteristics between two rough parallel circular discs are obtained. Findings – According to the results, it is found that, the combined effects of couple stresses and viscosity-pressure dependency increases squeeze film performance with respect to the classical Newtonian iso-viscous (constant viscosity) lubricant. However, increasing the rotational inertia parameter reduces squeeze film characteristics. On the other hand, depending on the structure of surface roughness, the squeeze film characteristics can be increased or decreased. Furthermore, results show that the surface roughness with circular pattern increases squeeze film characteristics, while the surface roughness with radial pattern will decrease it. Originality/value – This paper is relatively original and describes the squeeze film characteristics between two parallel circular discs with viscosity-pressure dependency, rotational inertia, couple stresses and surface roughness effects.


Author(s):  
J-R Lin

The derivation of non-Newtonian squeeze-film Reynolds-type equation between two convex surfaces and its application are of interest in the present study. Based upon the Stokes micro-continuum theory, the non-Newtonian squeeze-film Reynolds-type equation between two convex surfaces is derived to take into account the effects of couple stresses resulting from the lubricant blended with various additives. This non-Newtonian squeeze-film Reynolds-type equation is applicable to squeeze-film bearings lubricated with couple stress fluids when the general upper film shape and the lower film shape are specified. To guide the use of the equation, the squeeze-film mechanism between two different cylinders of infinite width with non-Newtonian couple stress fluids is illustrated. Comparing with the Newtonian-lubricant case, the presence of non-Newtonian couple stresses provides an increase in the load-carrying capacity, and therefore lengthens the approaching time. In addition, the effects of couple stresses on the squeeze film characteristics are more pronounced at lower squeeze-film height with larger couple stress parameters and larger radius ratios of cylinders. As the value of radius ratio approaches infinity, the present results agree closely with those of the previous studies by Hamrock [6] and by Lin et al. [19], respectively; it provides a support to the present study.


2018 ◽  
Vol 70 (7) ◽  
pp. 1201-1208 ◽  
Author(s):  
Maghsood Daliri

Purpose The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by ferro-fluid couple stress lubricant. Design/methodology/approach Based upon the Stokes couple stress theory, ferro-hydrodynamic model of Shliomis and Christensen rough surfaces model, squeeze-film characteristics between two rough parallel circular discs considering rotational inertia effects are obtained. Findings According to the results, it is found that the combined effects of couple stresses and ferro-fluid lubricants increases squeeze film performance with respect to the classical Newtonian lubricant. However, increasing the rotational inertia parameter reduces squeeze film characteristics. On the other hand, depending on the structure of surface roughness, the squeeze film characteristics can be increased or decreased. Furthermore, results show that the surface roughness with circular pattern increases squeeze film characteristics, while the surface roughness with radial pattern will decrease it. Originality/value This paper is relatively original and describes the squeeze film characteristics between two parallel circular discs with ferro- fluid, rotational inertia, couple stresses and surface roughness effects.


Sign in / Sign up

Export Citation Format

Share Document