scholarly journals Traits of intensive livestock systems in Algerian steppe territories

2022 ◽  
Vol 21 (1) ◽  
pp. 41-50
Author(s):  
Oussama Siad ◽  
Kahramen Deghnouche ◽  
Igino Andrighetto ◽  
Barbara Contiero ◽  
Giorgio Marchesini ◽  
...  
Keyword(s):  
2021 ◽  
Vol 109 ◽  
pp. 105624
Author(s):  
Simone Gingrich ◽  
Christian Lauk ◽  
Fridolin Krausmann ◽  
Karl-Heinz Erb ◽  
Julia Le Noë

Nature Food ◽  
2020 ◽  
Vol 1 (7) ◽  
pp. 400-401
Author(s):  
Nathaniel D. Mueller ◽  
Luis Lassaletta
Keyword(s):  

2019 ◽  
Vol 35 (6) ◽  
pp. 631-642 ◽  
Author(s):  
Júlio César dos Reis ◽  
Mariana Y. T. Kamoi ◽  
Daniel Latorraca ◽  
Rafael F. F. Chen ◽  
Miqueias Michetti ◽  
...  

AbstractPopulation growth and rising incomes have led to increasing global demand for meat products. Meeting this demand without converting remaining natural ecosystems or further degrading ecosystems is one of the largest global sustainability challenges. A critical step to overcoming this challenge is to increase the productivity of livestock grazing systems, which occupy the largest land area of any type of agriculture globally. Integrated crop−livestock systems (iCL), which re-couple crop and livestock production at the farm scale, have been considered a promising strategy to tackle this challenge by restoring degraded pasturelands and providing supplemental nutrition to livestock. However, few studies have analyzed the economic viability of such systems, especially in Brazil, an important player in global food systems. This paper presents an economic analysis of iCL in Mato Grosso, Brazil, the largest grain and beef producer in the country, which spans the ecologically diverse Amazon, Cerrado and Pantanal biomes. We compare the economic performance of an integrated soybean/corn and beef cattle system to a continuous crop (soybean/corn) system and a continuous livestock (beef cattle) production system from 2005 to 2012. We use empirical case study data to characterize a ‘typical’ farm for each production system within the study region. We find that the integrated crop−livestock system has a higher annual net present value (NPV) per hectare (ha) than continuous cropping or livestock under a range of discount rates. However, under a scenario of substantially higher crop prices, the continuous cropping outperforms iCL. While iCL is not feasible in all regions of the Amazon and Cerrado, our results indicate that in places where the biophysical and market conditions are suitable for production, it could be a highly profitable way to intensify cattle production and potentially spare land for other uses, including conservation. Nevertheless, additional credit and technical support may be needed to overcome high upfront costs and informational barriers to increase iCL areas as a sustainable development strategy for agriculture in the Amazon and Cerrado regions.


2019 ◽  
Vol 82 ◽  
pp. 841-853 ◽  
Author(s):  
O. Cortner ◽  
R.D. Garrett ◽  
J.F. Valentim ◽  
J. Ferreira ◽  
M.T. Niles ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 672
Author(s):  
Sandoval Carpinelli ◽  
Adriel Ferreira da Fonseca ◽  
Pedro Henrique Weirich Neto ◽  
Santos Henrique Brant Dias ◽  
Laíse da Silveira Pontes

Residue decomposition from cattle dung is crucial in the nutrient cycling process in Integrated Crop–Livestock Systems (ICLS). It also involves the impact of the presence of trees exerted on excreta distribution, as well as nutrient cycling. The objectives of this research included (i) mapping the distribution of cattle dung in two ICLS, i.e., with and without trees, CLT and CL, respectively, and (ii) quantification of dry matter decomposition and nutrient release (nitrogen—N, phosphorus—P, potassium—K, and sulphur—S) from cattle dung in both systems. The cattle dung excluded boxes were set out from July 2018 to October 2018 (pasture phase), and retrieved after 1, 7, 14, 21, 28, 56 and 84 days (during the grazing period). The initial concentrations of N (~19 g kg−1), P (~9 g kg−1), K (~16 g kg−1), and S (~8 g kg−1) in the cattle dung showed no differences. The total N, P, K and S released from the cattle dung residues were less in the CLT system (2.2 kg ha−1 of N; 0.7 kg ha−1 of P; 2.2 kg ha−1 of K and 0.6 kg ha−1 of S), compared to the CL (4.2 kg ha−1 of N; 1.4 kg ha−1 of P; 3.6 kg ha−1 of K and 1.1 kg ha−1 of S). Lesser quantities of cattle dung were observed in the CLT (1810) compared to the CL (2652), caused by the lower stocking rate, on average, in this system (721 in the CL vs. 393 kg ha−1 in the CLT) because of the reduced amount of pasture in the CLT systems (−41%), probably due to light reduction (−42%). The density of the excreta was determined using the Thiessen polygon area. The CL system revealed a higher concentration of faeces at locations near the water points, gate and fences. The CLT affects the spatial distribution of the dung, causing uniformity. Therefore, these results strengthen the need to understand the nutrient release patterns from cattle dung to progress fertilisation management.


2021 ◽  
Vol 30 ◽  
pp. 100566
Author(s):  
Jesús Castillo ◽  
Guy.J.D. Kirk ◽  
M. Jordana Rivero ◽  
Achim Dobermann ◽  
Stephan M. Haefele

Sign in / Sign up

Export Citation Format

Share Document