n fixation
Recently Published Documents


TOTAL DOCUMENTS

447
(FIVE YEARS 146)

H-INDEX

38
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Richard Ansong Omari ◽  
Kun Yuan ◽  
Khoa Trinh Anh ◽  
Moritz Reckling ◽  
Mosab Halwani ◽  
...  

Commercial inoculants are often used to inoculate field-grown soybean in Europe. However, nodulation efficiencies in these areas are often low. To enhance biological nitrogen (N) fixation and increase domestic legume production, indigenous strains that are adapted to local conditions could be used to develop more effective inoculants. The objective of this study was to assess the ability of locally isolated Bradyrhizobium strains to enhance soybean productivity in different growing conditions of Northeast Germany. Three indigenous Bradyrhizobium isolates (GMF14, GMM36, and GEM96) were tested in combination with different soybean cultivars of different maturity groups and quality characteristics in one field trial and two greenhouse studies. The results showed a highly significant strain × cultivar interactions on nodulation response. Independent of the Bradyrhizobium strain, inoculated plants in the greenhouse showed higher nodulation, which corresponded with an increased N uptake than that in field conditions. There were significantly higher nodule numbers and nodule dry weights following GMF14 and GMM36 inoculation in well-watered soil, but only minor differences under drought conditions. Inoculation of the soybean cultivar Merlin with the strain GEM96 enhanced nodulation but did not correspond to an increased grain yield under field conditions. USDA110 was consistent in improving the grain yield of soybean cultivars Sultana and Siroca. On the other hand, GMM36 inoculation to Sultana and GEM96 inoculation to Siroca resulted in similar yields. Our results demonstrate that inoculation of locally adapted soybean cultivars with the indigenous isolates improves nodulation and yield attributes. Thus, to attain optimal symbiotic performance, the strains need to be matched with specific cultivars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rajesh Kumar Singh ◽  
Pratiksha Singh ◽  
Dao-Jun Guo ◽  
Anjney Sharma ◽  
Dong-Ping Li ◽  
...  

Excessive, long-term application of chemical fertilizers in sugarcane crops disrupts soil microbial flora and causes environmental pollution and yield decline. The role of endophytic bacteria in improving crop production is now well-documented. In this study, we have isolated and identified several endophytic bacterial strains from the root tissues of five sugarcane species. Among them, eleven Gram-negative isolates were selected and screened for plant growth-promoting characteristics, i.e., production of siderophores, indole-3-acetic acid (IAA), ammonia, hydrogen cyanide (HCN), and hydrolytic enzymes, phosphorus solubilization, antifungal activity against plant pathogens, nitrogen-fixation, 1-aminocyclopropane-1-carboxylic acid deaminase activity, and improving tolerance to different abiotic stresses. These isolates had nifH (11 isolates), acdS (8 isolates), and HCN (11 isolates) genes involved in N-fixation, stress tolerance, and pathogen biocontrol, respectively. Two isolates Pantoea cypripedii AF1and Kosakonia arachidis EF1 were the most potent strains and they colonized and grew in sugarcane plants. Both strains readily colonized the leading Chinese sugarcane variety GT42 and significantly increased the activity of nitrogen assimilation enzymes (glutamine synthetase, NADH glutamate dehydrogenase, and nitrate reductase), chitinase, and endo-glucanase and the content of phytohormones gibberellic acid, indole-3-acetic acid, and abscisic acid. The gene expression analysis of GT42 inoculated with isolates of P. cypripedii AF1 or K. arachidis EF1 showed increased activity of nifH and nitrogen assimilation genes. Also, the inoculated diazotrophs significantly increased plant nitrogen content, which was corroborated by the 15N isotope dilution analysis. Collectively, these findings suggest that P. cypripedii and K. arachidis are beneficial endophytes that could be used as a biofertilizer to improve plant nitrogen nutrition and growth of sugarcane. To the best of our knowledge, this is the first report of sugarcane growth enhancement and nitrogen fixation by Gram-negative sugarcane root-associated endophytic bacteria P. cypripedii and K. arachidis. These strains have the potential to be utilized as sugarcane biofertilizers, thus reducing nitrogen fertilizer use and improving disease management.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1707
Author(s):  
Fei Wang ◽  
Ying Zhang ◽  
Yong Xia ◽  
Zhenbo Cui ◽  
Chengyou Cao

Revegetation by planting shrubs on moving sand dunes is widely used to control desertification in arid/semi-arid areas. The soil including microbial community can gradually be improved along with plantation development. The purposes of this study were (1) to investigate the responses of microbial communities involved in the mineralization of soil organic phosphorus (OP) and dissolution of inorganic P (IOP) in the development of sand-fixating plantation and (2) to discuss the interactions between P turnover microbial communities and soil properties. We assessed the compositions of soil phoD gene (one of the Pho regulons encoding alkaline phosphomonoesterases) and gcd gene (encoding glucose dehydrogenase) in microbial community by using high-throughput Illumina MiSeq sequencing in a chronosequence of Caragana microphylla plantations (0-, 10-, 20-, and 37-year plantations and a native C. microphylla shrub forest) in Horqin Sandy Land, Northeast China. Soil properties including soil nutrients, enzymatic activity, and P fractions were also determined. The abundance of phoD and gcd genes linearly increased with the plantation age. However, the diversity of soil phoD microbes was more abundant than that of gcd. The phoD gene abundance and the fractions of total OP and IOP were positively correlated with the activity of phosphomonoesterase. Actinobacteria and Streptomycetaceae were the dominant phoD taxa, while Proteobacteria and Rhizobiaceae were the dominant gcd taxa. Plantation development facilitated the progressive successions of soil phoD and gcd communities resulting from the increase in the abundance of dominant taxa. Total soil N, NH4-N, and available K were the main factors affecting the structures of phoD and gcd communities, while pH was not significantly influencing factor in such arid and nutrient-poor sandy soil. Many phoD or gcd OTUs were classified into Rhizobium and Bradyrhizobium, suggesting the coupling relationship between soil P turnover and N fixation.


2021 ◽  
Vol 13 (23) ◽  
pp. 13437
Author(s):  
Abba Nabayi ◽  
Christopher Teh Boon Sung ◽  
Ali Tan Kee Zuan ◽  
Tan Ngai Paing

Washed rice water (WRW) is said to be a beneficial plant fertilizer because of its nutrient content. However, rigorous scientific studies to ascertain its efficiency are lacking. The purpose of this study was to determine the effect of fermenting WRW on the bacterial population and identification, and to measure how fermentation affects the nutrient composition of WRW. Rice grains were washed in a volumetric water-to-rice ratio of 3:1 and at a constant speed of 80 rpm for all treatments. The treatments were WRW fermented at 0 (unfermented), 3, 6, and 9 days. Bacterial N fixation and P and K solubilization abilities in the fermented WRW were assessed both qualitatively and quantitatively. The isolated bacterial strains and the WRW samples were also tested for catalase and indole acetic acid (IAA) production ability. Significantly greater N fixation, P and K solubilization, and IAA production were recorded after 3 days of fermentation compared with other fermentation periods, with increases of 46.9–83.3%, 48.2–84.1%, 73.7–83.6%, and 13.3–85.5%, respectively, in addition to the highest (2.12 × 108 CFU mL−1) total bacterial population. Twelve bacteria strains were isolated from the fermented WRW, and the gene identification showed the presence of beneficial bacteria Bacillus velezensis, Enterobacter spp., Pantoea agglomerans, Klebsiella pneumoniae and Stenotrophomonas maltophilia at the different fermentation periods. All the identified microbes (except Enterobacter sp. Strain WRW-7) were positive for catalase production. Similarly, all the microbes could produce IAA, with Enterobacter spp. strain WRW-10 recording the highest IAA of up to 73.7% higher than other strains. Generally, with increasing fermentation periods, the nutrients N, S, P, K, Mg, NH4+, and NO3− increased, while pH, C, and Cu decreased. Therefore, fermentation of WRW can potentially increase plant growth and enhance soil health because of WRW’s nutrients and microbial promotional effect, particularly after 3 days of fermentation.


2021 ◽  
Author(s):  
Laurent Bopp ◽  
Olivier Aumont ◽  
Lester Kwiatkowski ◽  
Corentin Clerc ◽  
Léonard Dupont ◽  
...  

Abstract. The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern because changing NPP will have widespread consequences for marine ecosystems and their associated services. Projections by the current generation of Earth System Models have suggested decreases in global NPP in response to future climate change, albeit with very large uncertainties. Here, we make use of two versions of the Institut Pierre Simon Laplace Climate Model (IPSL-CM) that simulate divergent NPP responses to similar high-emission scenarios in the 21st century and identify nitrogen fixation as the main driver of these divergent NPP responses. Differences in the way N-fixation is parameterized in the marine biogeochemical component PISCES of the IPSL-CMs lead to N-fixation rates that are either stable or double over the course of the 21st century, resulting in decreasing or increasing global NPP, respectively. An evaluation of these 2 model versions does not help constrain future NPP projection uncertainties. However, the use of a more comprehensive version of PISCES, with variable nitrogen-to-phosphorus ratios as well as a revised parameterization of the temperature sensitivity of N-fixation, suggests only moderate changes of global-averaged N-fixation in the 21st century. This leads to decreasing global NPP, in line with the model-mean changes of a recent multi-model intercomparison. Lastly, despite contrasting trends in NPP, all our model versions simulate similar and significant reductions in planktonic biomass. This suggests that projected plankton biomass may be a much more robust indicator than NPP of the potential impact of anthropogenic climate change on marine ecosystems across model.


2021 ◽  
Vol 19 (4) ◽  
pp. e08R01-e08R01
Author(s):  
Asma Boujenna ◽  

Agricultural yields are often limited by nitrogen (N) availability, especially in countries of the developing world, whereas in industrialized nations the application of chemical N fertilizers has reached unsustainable levels that have resulted in severe environmental consequences. Finding alternatives to inorganic fertilizers is critical for sustainable and secure food production. Although gaseous nitrogen (N2) is abundant in the atmosphere, it cannot be assimilated by most living organisms. Only a selected group of microorganisms termed diazotrophs, have evolved the ability to reduce N2 to generate NH3 in a process known as biological nitrogen fixation (BNF) catalysed by nitrogenase, an oxygen-sensitive enzyme complex. This ability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the N fixing bacteria or the nitrogenase enzyme responsible for N fixation. This review explores three potential approaches to obtain N-fixing cereals: (a) engineering the nitrogenase enzyme to function in plant cells; (b) engineering the legume symbiosis into cereals; and (c) engineering cereals with the capability to associate with N-fixing bacteria.


2021 ◽  
Vol 19 (4) ◽  
pp. e08R01-e08R01
Author(s):  
Asma Boujenna ◽  

ricultural yields are often limited by nitrogen (N) availability, especially in countries of the developing world, whereas in industrialized nations the application of chemical N fertilizers has reached unsustainable levels that have resulted in severe environmental consequences. Finding alternatives to inorganic fertilizers is critical for sustainable and secure food production. Although gaseous nitrogen (N2) is abundant in the atmosphere, it cannot be assimilated by most living organisms. Only a selected group of microorganisms termed diazotrophs, have evolved the ability to reduce N2 to generate NH3 in a process known as biological nitrogen fixation (BNF) catalysed by nitrogenase, an oxygen-sensitive enzyme complex. This ability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the N fixing bacteria or the nitrogenase enzyme responsible for N fixation. This review explores three potential approaches to obtain N-fixing cereals: (a) engineering the nitrogenase enzyme to function in plant cells; (b) engineering the legume symbiosis into cereals; and (c) engineering cereals with the capability to associate with N-fixing bacteria.


2021 ◽  
Vol 9 (12) ◽  
pp. 2476
Author(s):  
Mikayla Van Bel ◽  
Amanda E. Fisher ◽  
Laymon Ball ◽  
J. Travis Columbus ◽  
Renaud Berlemont

Most plants rely on specialized root-associated microbes to obtain essential nitrogen (N), yet not much is known about the evolutionary history of the rhizosphere–plant interaction. We conducted a common garden experiment to investigate the plant root–rhizosphere microbiome association using chloridoid grasses sampled from around the world and grown from seed in a greenhouse. We sought to test whether plants that are more closely related phylogenetically have more similar root bacterial microbiomes than plants that are more distantly related. Using metagenome sequencing, we found that there is a conserved core and a variable rhizosphere bacterial microbiome across the chloridoid grasses. Additionally, phylogenetic distance among the host plant species was correlated with bacterial community composition, suggesting the plant hosts prefer specific bacterial lineages. The functional potential for N utilization across microbiomes fluctuated extensively and mirrored variation in the microbial community composition across host plants. Variation in the bacterial potential for N fixation was strongly affected by the host plants’ phylogeny, whereas variation in N recycling, nitrification, and denitrification was unaffected. This study highlights the evolutionary linkage between the N fixation traits of the microbial community and the plant host and suggests that not all functional traits are equally important for plant–microbe associations.


Sign in / Sign up

Export Citation Format

Share Document