Environmental evaluation of the application of compost sewage sludge to landscaping as soil amendments: a field experiment on the grassland soils in Beijing

2014 ◽  
Vol 54 (4-5) ◽  
pp. 1118-1126 ◽  
Author(s):  
Weifang Ma ◽  
Fang Liu ◽  
Xiang Cheng ◽  
Yang Jing ◽  
Chao Nie ◽  
...  
2007 ◽  
Vol 39 (6) ◽  
pp. 1328-1332 ◽  
Author(s):  
M.B. Almendro-Candel ◽  
M.M. Jordán ◽  
J. Navarro-Pedreño ◽  
J. Mataix-Solera ◽  
I. Gómez-Lucas

Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 519 ◽  
Author(s):  
J. Sierra ◽  
S. Fontaine ◽  
L. Desfontaines

Laboratory incubations and a field experiment were carried out to determine the factors controlling N mineralization and nitrification, and to estimate the N losses (leaching and volatilization) in a sewage-sludge-amended Oxisol. Aerobically digested sludge was applied at a rate equivalent to 625 kg N/ha. The incubations were conducted as a factorial experiment of temperature (20˚C, 30˚C, and 40˚C) soil water (–30 kPa and –1500 kPa) sludge type [fresh (FS) water content 6230 g/kg; dry (DS) water content 50 g/kg]. The amount of nitrifiers was determined at the beginning and at the end of the experiment. The incubation lasted 24 weeks. The field study was conducted using bare microplots (4 m) and consisted of a factorial experiment of sludge type (FS and DS) sludge placement (subsurface, I+; surface, I–). Ammonia volatilization and the profile (0–0.90 m) of mineral N concentration were measured during 6 and 29 weeks after sludge application, respectively. After 24 weeks of incubation at 40˚C and –30 kPa, net N mineralization represented 52% (FS) and 71% (DS) of the applied N. The difference between sludges was due to an initial period of N immobilization in FS. Nitrification was more sensitive than N mineralization to changes in water potential and it was fully inhibited at –1500 kPa. The introduction of a large amount of nitrifiers with FS did not modify the rate of nitrification, which was principally limited by soil acidity (pH 4.9). Although N mineralization was greatest at 30˚C, nitrification increased continuously with temperature. Nitrogen mineralization from DS was well described by the double-exponential equation. For FS, the equation was modified to take into account an immobilization-remineralization period. Sludge placement significantly affected the soil NO-3/NH+4 ratio in the field: 16 for I+ and 1.5 for I–, after 11 weeks. In the I– treatment, nitrification of the released NH+4 was limited by soil moisture because of the dry soil mulch formed a few hours after rain. At the end of the field experiment, the estimated losses of N by leaching were 432 kg N/ha for I+ and 356 kg N/ha for I–. Volatilization was not detectable in the I+ microplots and it represented only 0.5% of the applied N in the I– microplots. The results showed that placement of sludge may be a valuable tool to decrease NO-3 leaching by placing the sludge under unfavourable conditions for nitrification.


1997 ◽  
Vol 26 (6) ◽  
pp. 1467-1477 ◽  
Author(s):  
S. C. Wilson ◽  
R. E. Alcock ◽  
A. P. Sewart ◽  
K. C. Jones

2021 ◽  
Vol 279 ◽  
pp. 111824
Author(s):  
Jhon Kenedy Moura Chagas ◽  
Cícero Célio de Figueiredo ◽  
Juscimar da Silva ◽  
Jorge Paz-Ferreiro

2015 ◽  
Vol 2 (2) ◽  
pp. 1221-1261 ◽  
Author(s):  
A. Krause ◽  
T. Nehls ◽  
E. George ◽  
M. Kaupenjohann

Abstract. Andosols require the regular application of phosphorus (P) to sustain crop productivity. In a practice oriented field experiment at an Andosol site in NW Tanzania, the effects of various soil amendments (standard compost, urine, biogas slurry and CaSa-compost [biochar and sanitized human excreta]) on (i) the productivity of locally grown crop species, on (ii) the plants' nutrient status and on (iii) the soil's physico-chemical properties were studied. None of the amendments had any significant effect on soil moisture, so the observed variation in crop yield and plant nutrition reflected differences in nutrient availability. The application of CaSa-compost increased the level of available P in the top-soil from 0.5 to 4.4 mg kg−1 and the soil pH from 5.3 to 5.9. Treatment with biogas slurry, standard compost and CaSa-compost increased the above-ground biomass of Zea mays by, respectively, 140, 154 and 211 %. The grain yields of maize on soil treated with biogas slurry, standard compost and CaSa-compost were, respectively, 2.63, 3.18 and 4.40 t ha−1, compared to only 1.10 t ha−1 on unamended plots. All treatments enhanced crop productivity and increased the uptake of nutrients into the maize grains. The CaSa-compost was especially effective in mitigating P deficiency and soil acidification. We conclude that all treatments are viable as substitute for synthetic fertilizers. However, further steps are required to integrate the tested soil amendments into farm-scale nutrient management and to balance the additions and removals of nutrients, so that the loop can be closed.


2021 ◽  
Author(s):  
Wafa Hassen ◽  
Bilel Hassen ◽  
Rim Werhani ◽  
Yassine Hidri ◽  
Abdennaceur Hassen

The valorization of different organic residues like municipal solid wastes, sewage sludge and olive mill wastewater is becoming more and more worrying in the different modern communities and is becoming relevant and crucial in terms of environmental preservation. The choice of the treatment technique should not be only from the point of view of economic profitability but, above all, must consider the efficiency of the treatment method. Thus, an attempt to remove polyphenols from olive mill wastewater would have a double interest: on the one hand, to solve a major environmental problem and to recover and valorize the olive mill wastewater for advanced applications in food processing and soil amendments. It is also interesting to think of associating two harmful wastes by co-composting such as sewage sludge-vegetable gardens, sewage sludge-municipal solid waste, and green wastes-olive mill wastewater…, to get a mixed compost of good physical–chemical and biological qualities useful for agricultural soil fertilization. Finally, in order to be more practical, we will describe specifically in this chapter a new variant of composting and co-composting technology intended for waste treatment that is very simple, inexpensive and easy to implement.


2020 ◽  
Vol 7 (2020) (2) ◽  
pp. 1-9
Author(s):  
Amanda Silva ◽  
◽  
Adilson Dalmora ◽  
Beatriz Firpo ◽  
Rubens Kautzmann ◽  
...  

The present study focuses on the agronomic efficacy evaluation of volcanic rock mining waste and the sewage sludge from a dairy industry as a fertilizer for an acid soil, and to evaluate its nutrients and toxic potentially elements. The waste samples were collected from a volcanic rock mining and a dairy industry located in the southern region of Brazil. X-ray diffraction technique was employed to identify the mineralogical phases present in the rock dust. Rock and sludge major elements composition were analyzed after fusion along with LiBO2 followed by X-Ray Fluorescence. Toxic potentially elements content was measured according to United States Environmental Protection Agency 3050b method. The sludge and rock were applied to small-scale field experiment in which black oats was then sown. Four treatments were compared: (T1) 3,240 kg ha-1 of sewage sludge, (T2) 1,620 kg ha-1 of sewage sludge with 6,000 kg ha-1 of rock, (T3) 12,000 kg ha-1 of rock and control, which did not receive any type of input. Changes in soil properties and the nutritional status of the black oats were monitored after ninety days. The addition of the sludge combined with rock dust led to substantial increases in black oats leaves nutrient concentrations (mainly Ca, K, P and Zn) and in soil available K and P. In addition, the potentially toxic elements levels of both wastes are low and therefore the risks of environmental contamination are considerably reduced. Keywords: dairy industry sewage sludge; volcanic rock mining waste; natural soil fertilization.


Sign in / Sign up

Export Citation Format

Share Document