A comprehensive investigation on bearing capacity of shallow foundations on unsaturated fly ash slopes adopting finite element limit analysis

Author(s):  
Abhijit Anand ◽  
Rajib Sarkar
1989 ◽  
Vol 26 (3) ◽  
pp. 369-374 ◽  
Author(s):  
T. Tamura ◽  
R. Y. S. Pak

This paper describes the formulation of a finite element method by which a limit analysis of a rigid–plastic medium with discontinuities can be performed. The Drucker–Prager criterion is adopted to describe the yielding of the medium, while the Mohr–Coulomb law is used to model the interface of the discontinuous velocity fields. Both associated and nonassociated flow rules are considered in the constitutive characterization. Results are presented to illustrate the influence of discontinuities on the bearing capacity of a surface foundation. Key words: bearing capacity, constitutive law, dilatancy, discontinuity, limit, plasticity, finite element analysis.


2019 ◽  
Vol 110 ◽  
pp. 94-113 ◽  
Author(s):  
Ramin Vali ◽  
Majid Beygi ◽  
Mohammad Saberian ◽  
Jie Li

2011 ◽  
Vol 48 (3) ◽  
pp. 425-438 ◽  
Author(s):  
Won Taek Oh ◽  
Sai K. Vanapalli

The bearing capacity and settlement of foundations are determined experimentally or modelled numerically based on conventional soil mechanics for saturated soils. In both methods, bearing capacity and settlement are estimated based on the applied vertical stress versus surface settlement relationship. These methods are also conventionally used for soils that are in an unsaturated condition, ignoring the contribution of matric suction. In this study, a methodology is proposed to estimate the bearing capacity and settlement of shallow foundations in unsaturated sands by predicting the applied vertical stress versus surface settlement relationship. The proposed method requires soil parameters obtained under only saturated conditions (i.e., effective cohesion, effective internal friction angle, and modulus of subgrade reaction from model footing test) along with the soil-water characteristic curve (SWCC). In addition, finite element analyses are undertaken to simulate the applied vertical stress versus surface settlement relationship for unsaturated sands. The proposed method and finite element analyses are performed using an elastic – perfectly plastic model. The predicted bearing capacities and settlements from the proposed method and finite element analyses are compared with published model footing test results. There is good agreement between measured and predicted results.


Sign in / Sign up

Export Citation Format

Share Document