Limit analysis applied to the bearing capacity of shallow foundations

1999 ◽  
pp. 382-425
2005 ◽  
Vol 42 (2) ◽  
pp. 663-672 ◽  
Author(s):  
Ernesto Ausilio ◽  
Enrico Conte

In this paper, the kinematic approach of limit analysis is used to analyse the influence of groundwater on the bearing capacity of shallow foundations. Analytical expressions are derived allowing the bearing capacity of strip footings resting on a soil where the water table is at some depth below the footing base to be calculated. Results from these expressions are compared with those obtained using other theoretical solutions available in literature. Moreover, a parametric study is carried out to illustrate the effects on bearing capacity of submergence of the soil below the footing. The importance of these effects is discussed, and remarks are also made on the results provided by some simplified methods that are currently used in practice. Finally, a simple approximation of the theoretical solution derived in this study is suggested for practical purposes.Key words: bearing capacity, limit analysis, groundwater, strip footings.


Author(s):  
Ana Alencar ◽  
Rubén Galindo ◽  
Svetlana Melentijevic

AbstractThe presence of the groundwater level (GWL) at the rock mass may significantly affect the mechanical behavior, and consequently the bearing capacity. The water particularly modifies two aspects that influence the bearing capacity: the submerged unit weight and the overall geotechnical quality of the rock mass, because water circulation tends to clean and open the joints. This paper is a study of the influence groundwater level has on the ultimate bearing capacity of shallow foundations on the rock mass. The calculations were developed using the finite difference method. The numerical results included three possible locations of groundwater level: at the foundation level, at a depth equal to a quarter of the footing width from the foundation level, and inexistent location. The analysis was based on a sensitivity study with four parameters: foundation width, rock mass type (mi), uniaxial compressive strength, and geological strength index. Included in the analysis was the influence of the self-weight of the material on the bearing capacity and the critical depth where the GWL no longer affected the bearing capacity. Finally, a simple approximation of the solution estimated in this study is suggested for practical purposes.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Mohammad Mahdi Hajitaheriha ◽  
Davood Akbarimehr ◽  
Amin Hasani Motlagh ◽  
Hossein Damerchilou

Sign in / Sign up

Export Citation Format

Share Document