scholarly journals Dynamic analysis of an elastic ring squeeze film damper supported rotor using a semi-analytic method

2020 ◽  
Vol 14 (1) ◽  
pp. 1263-1278
Author(s):  
Zhifei Han ◽  
Zhisai Ma ◽  
Wei Zhang ◽  
Bingbing Han ◽  
Qian Ding
Author(s):  
A. El-Shafei ◽  
R. V. Eranki

The technique of equivalent linearization is presented in this paper as a powerful technique to perform nonlinear dynamic analysis of squeeze film damper (SFD) supported rotors using linear rotordynamic methods. Historically, it is customary to design squeeze film dampers (SFDs) for rotordynamic analysis by assuming circular centered orbits, which is convenient in making the nonlinear damper coefficients time independent and thus can be used in an iterative approach to determine the rotor dynamic characteristics. However, the general synchronous orbit is elliptic in nature due to possible asymmetry in the rotor support. This renders the nonlinear damper coefficients time dependent which would require extensive numerical computation using numerical integration to determine the rotor dynamic characteristics. Alternatively, it is shown that the equivalent linearization, which is based on a least square squares approach, can be used to obtain time independent damper coefficients for SFDs executing eccentric elliptic orbits which are nonlinear in the orbit parameters. The resulting equivalent linear forces are then used in an iterative procedure to obtain the unbalance response of a rigid rotor-SFD system. Huge savings over numerical integration are reported for this simple rotor. The technique can be extended to be used in conjunction with currently available linear rotordynamic programs to determine the rotor dynamic characteristics through iteration. It is expected that for multi-rotor multi-bearing systems this technique will result in even more economical computation.


2019 ◽  
Vol 71 (10) ◽  
pp. 1144-1151
Author(s):  
Zhenlin Wang ◽  
Zhansheng Liu ◽  
Guanghui Zhang

Purpose The purpose of this paper is to present a numerical model to investigate the dynamic behavior and force coefficients of a compact squeeze film damper with dual film clearances adjusted by an elastic ring, known as elastic ring squeeze film damper (ERSFD). Design/methodology/approach The governing equations of ERSFD as well as the boundary conditions are obtained based on Reynolds equation. A simplified Greenwood–Williamson model is implemented to investigate the contact behavior between the elastic ring and the journal. The interactions between the films and the elastic ring are achieved by block iterative method. Findings The radial deformation as well as velocity of the elastic ring are captured to illustrate the pressure profiles of the inner and outer films. High-order frequency components related to the number of the boss N are observed on the frequency spectrum of the film force. The force coefficients of the ERSFD are constant for a wider range of non-dimensional whirling radius ε compared with conventional squeeze film damper. Originality/value The force coefficients of the ERSFD are obtained by assuming that the journal center moves in a circular centered orbit. High-order frequency components related to the number of bosses N are observed. These findings may provide helpful materials for the application of the ERSFD.


1994 ◽  
Vol 116 (3) ◽  
pp. 682-691 ◽  
Author(s):  
A. El-Shafei ◽  
R. V. Eranki

The technique of equivalent linearization is presented in this paper as a powerful technique to perform nonlinear dynamic analysis of squeeze film damper (SFD) supported rotors using linear rotor-dynamic methods. Historically, it is customary to design SFDs for rotor-dynamic analysis by assuming circular-centered orbits, which is convenient in making the nonlinear damper coefficients time independent and thus can be used in an iterative approach to determine the rotor-dynamic characteristics. However, the general synchronous orbit is elliptic in nature due to possible asymmetry in the rotor support. This renders the nonlinear damper coefficients time dependent, which would require extensive numerical computation using numerical integration to determine the rotor dynamic characteristics. Alternatively, it is shown that the equivalent linearization, which is based on a least-squares approach, can be used to obtain time-independent damper coefficients for SFDs executing eccentric elliptic orbits, which are nonlinear in the orbit parameters. The resulting equivalent linear forces are then used in an iterative procedure to obtain the unbalance response of a rigid rotor-SFD system. Huge savings over numerical integration are reported for this simple rotor. The technique can be extended to be used in conjunction with currently available linear rotor-dynamic programs to determine the rotor-dynamic characteristics through iteration. It is expected that for multirotor multibearing systems this technique will result in even more economical computation.


Sign in / Sign up

Export Citation Format

Share Document