squeeze film damper
Recently Published Documents


TOTAL DOCUMENTS

411
(FIVE YEARS 71)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 615
Author(s):  
Haobo Wang ◽  
Yulai Zhao ◽  
Zhong Luo ◽  
Qingkai Han

Squeeze film damper (SFD) is widely used in the vibration suppression of aeroengine rotor systems, but will cause complex motions of the rotor system under specific operating conditions. In this paper, a lumped-mass dynamic model of the high-pressure rotor system in an aeroengine is established, and the nonlinear stiffness and damping formula of SFD are introduced into the above model. The vibration responses of the rotor system under different rotating speeds and with different unbalances are investigated numerically, and the influence of SFD on the rotor system vibration and the change of suppression ability are compared and analyzed. The results show that in the case of high speed, together with a small unbalance, the rotor system will perform a complex vibration or a bistable vibration due to SFD. If the unbalance is properly increased under the same case of high speed, the vibration of the rotor becomes single-harmonic and the bistable vibration disappears. The research results can provide a helpful reference for analyzing complex vibration mechanisms of the rotor system with SFD and achieving an effective vibration suppression through unbalance regulation.


The reduction of noises, vibration, and mechanical waves transmitting through water from the shells of submarines is essential to their safe operation and travelling. Vibrations from the rotors of the engines are widely deemed as one of the main sources to which engineers have tried to attenuate with various designs. Squeeze-film dampers can be easily integrated into rotor-bearing structures in order to lower the level of vibrations caused by rotors out of balance. For this advantage, squeeze-film dampers are widely used in air-turbine engines. This paper presents preliminary results of a numerical simulation of a shaft running on a journal bearing integrated with a squeeze-film damper and evaluates the capacity in reducing vibrations concerning the stability of static equilibrium of the shaft journal center. The proposed damper is designed in spherical shape with self-aligning capacity. The results were obtained using finite difference method and numerical integration of the full nonlinear equations of motion.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guoying Pang ◽  
Shuqian Cao ◽  
Yushu Chen ◽  
Huizheng Chen

To analyze the problem of vibration and bifurcation in the rotor system of the aeroengine with the elastic ring squeeze film damper (ERSFD) and elastic supports, the theoretical equation of the dynamic rotor system is developed in this paper, based on the rotor system, elastic ring squeeze film damper (ERSFD), and three elastic supports. The estimated analytical solution of the oil film force is solved using the short bearing approximation theory and the semi-oil film inference theory in the suspension and the inner and outer boss contact. Considering the oil film stiffness and damping of rolling bearings, the rolling bearing force model is established based on the elastohydrodynamic lubrication (EHL) theory. By the average method, the vibration and bifurcation modes are obtained concerning the bearing coefficient and parameters. The range optimization of parameters can be appropriately improved to enhance the dynamic characteristics of the device given different parameters of the hole of oil seepage, the stiffness, the position of elastic supports, and other structural parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huizheng Chen ◽  
Shun Zhong ◽  
Zhenyong Lu ◽  
Yushu Chen ◽  
Xiyu Liu

The squeeze film damper is usually adopted in the rotor system to suppress the vibrating motion of the rotor system. In this work, not only are the physical parameters of the squeeze film damper analyzed but also the system parameters, like the number of squeeze film dampers used and squeeze film damper implementation positions, are analyzed. The amplitude-frequency curves are obtained by conducting the simulation of a dual-rotor, intershaft, and oil film force concatenated model. Through the analysis and comparisons of the results, the vibration suppression effects of the squeeze film damper with different parameter configurations are analyzed and summarized. This work contributes to further optimization and dynamical analysis work on rotor systems with the application of the squeeze film damper.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhaojun Feng ◽  
Guihuo Luo ◽  
Hai Yang ◽  
Wangqun Deng ◽  
Wei Chen ◽  
...  

A new dynamic model is developed for the dual clearance squeeze film damper (DCSFD) considering the effect of cavitation in this paper. The relationship between the eccentricities of the inner and outer films is achieved based on the equations of motion. The Reynolds equation and Rayleigh–Plesset equation are employed to describe the kinetic properties of DCSFD and the cavitation effect of film, respectively. Under the assumption of compressible fluid, the pressure distribution of DCSFD is finally obtained by the numerically iterative method. The film pressure distribution in the outer layer (including the positive and negative pressure zones) obtained from the experimental test agrees well with the numerical prediction, which verifies the validity of the proposed numerical model. In Section 5, the effects of oil temperature, inlet pressure, eccentricity, and whirling frequency on the cavitation in the film are investigated systematically and experimentally. The experimental results indicate that cavitation mainly affect the pressure in the negative pressure zone of the inner and outer film of DCSFD, but has little influence on the pressure in the positive pressure zone. The area of cavitation increased with eccentricity; when the inner eccentricity reached 0.1 or above, the area near the injection hole of film also generated a small zone of negative pressure. The numerical model and the experimental results in this paper are valuable for further research and engineering applications of DCSFD.


2021 ◽  
pp. 93-103
Author(s):  
Jason Cook ◽  
Jay Basinger ◽  
Thomas Hazelwood ◽  
Claire Luttrell ◽  
Blake Van Hoy ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Yan ◽  
Lidong He ◽  
Zhe Deng ◽  
Xingyun Jia

Abstract As a novel structural damper, the unique structural characteristics of the integral squeeze film damper (ISFD) solve the nonlinear problem of the traditional squeeze film damper (SFD), and it has good linear damping characteristics. In this research, the experimental studies of ISFD vibration reduction performance are carried out for various working conditions of unbalanced rotors. Two ball bearing-rotor system test rigs are built based on ISFD: a rigid rotor test rig and a flexible rotor test rig. When the rotational speed of rigid rotor is 1500 rpm, ISFD can reduce the amplitude of the rotor by 41.79%. Under different unbalance conditions, ISFD can effectively improve the different degrees of unbalanced faults in the rotor system, reduce the amplitude by 43.21%, and reduce the sensitivity of the rotor to unbalance. Under different rotational speed conditions, ISFD can effectively suppress the unbalanced vibration of rigid rotor, and the amplitude can be reduced by 53.51%. In the experiment of the unbalanced response of the flexible rotor, it is found that ISFD can improve the damping of the rotor system, effectively suppress the resonance of the rotor at the critical speed, and the amplitude at the first-order critical speed can be reduced by 31.72%.


Author(s):  
Tuyen Vu Nguyen ◽  
Weiguang Li

The dynamic and hydrodynamic properties of the pad in the fluid pivot journal bearing are investigated in this paper. Preload coefficients, recess area, and size gap, which were selected as input parameters to investigate, are important parameters of fluid pivot journal bearing. The pad’s pendulum angle, lubricant oil flow through the gap, and recess pressure which characterizes the squeeze film damper were investigated with different preload coefficients, recess area, and gap sizes. The computational models were established and numerical methods were used to determine the equilibrium position of the shaft-bearing system. Since then, the pendulum angle of the pad, liquid flow, and recess pressure were determined by different eccentricities.


Sign in / Sign up

Export Citation Format

Share Document