Hydrodynamic analysis of a seaside quarter-circular breakwater with an array of porous cages using DBEM

2021 ◽  
pp. 1-16
Author(s):  
Nishad C.S. ◽  
S. Neelamani ◽  
K.G. Vijay
2019 ◽  
Vol 63 (4) ◽  
pp. 219-234
Author(s):  
João Baltazar ◽  
José A. C. Falcão de Campos ◽  
Johan Bosschers ◽  
Douwe Rijpkema

This article presents an overview of the recent developments at Instituto Superior Técnico and Maritime Research Institute Netherlands in applying computational methods for the hydrodynamic analysis of ducted propellers. The developments focus on the propeller performance prediction in open water conditions using boundary element methods and Reynolds-averaged Navier-Stokes solvers. The article starts with an estimation of the numerical errors involved in both methods. Then, the different viscous mechanisms involved in the ducted propeller flow are discussed and numerical procedures for the potential flow solution proposed. Finally, the numerical predictions are compared with experimental measurements.


2021 ◽  
Vol 170 ◽  
pp. 1020-1039
Author(s):  
S.D.G.S.P. Gunawardane ◽  
G.A.C.T. Bandara ◽  
Young-Ho Lee

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 398
Author(s):  
Jesus Gonzalez-Trejo ◽  
Cesar A. Real-Ramirez ◽  
Jose Raul Miranda-Tello ◽  
Ruslan Gabbasov ◽  
Ignacio Carvajal-Mariscal ◽  
...  

In vertical continuous casting machines the liquid steel from the tundish is poured into the mold through the Submerged Entry Nozzle (SEN). The shape and direction of the SEN exit jets affect the liquid steel dynamics inside the mold. This work quantifies the effect of the SEN pool on the principal characteristics of the jets emerging from it, precisely, the shape, the spread angles, and the mold impact point. Experimental and numerical simulations were carried out using a SEN simplified model, a square-shaped bore nozzle with square-shaped outlet ports whose length is minimal. These experiments showed two well-defined behaviors. When a single vortex dominates the hydrodynamics inside the simplified SEN, the exit jets spread out and are misaligned about the mold’s central plane. On the contrary, when the inner flow pattern shows two vortexes, the exit jets are compact and parallel to the mold wide walls. The measured difference on the jet’s falling angles is 5°, approximately, which implies that in an actual casting machine, the impingement point at the narrow mold wall would have a variation of 0.150 m. This hydrodynamic analysis would help design new SENs for continuous casting machines that improve steel quality.


2020 ◽  
Author(s):  
A. V. Zaitsev ◽  
A. A. Malyshev ◽  
K. F. Kouadio ◽  
O. S. Malinina ◽  
A. O. Lisovtsov

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 204
Author(s):  
Kamran Fouladi ◽  
David J. Coughlin

This report presents the development of a fluid-structure interaction model using commercial Computational fluid dynamics software and in-house developed User Defined Function to simulate the motion of a trout Department of Mechanical Engineering, Widener University holding station in a moving water stream. The oscillation model used in this study is based on the observations of trout swimming in a respirometry tank in a laboratory experiment. The numerical simulations showed results that are consistent with laboratory observations of a trout holding station in the tank without obstruction and trout entrained to the side of the cylindrical obstruction. This paper will be helpful in the development of numerical models for the hydrodynamic analysis of bioinspired unmanned underwater vehicle systems.


2021 ◽  
Vol 9 (4) ◽  
pp. 388
Author(s):  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Chien Ming Wang ◽  
Nagi Abdussamie ◽  
...  

Wave attenuation performance is the prime consideration when designing any floating breakwater. For a 2D hydrodynamic analysis of a floating breakwater, the wave attenuation performance is evaluated by the transmission coefficient, which is defined as the ratio between the transmitted wave height and the incident wave height. For a 3D breakwater, some researchers still adopted this evaluation approach with the transmitted wave height taken at a surface point, while others used the mean transmission coefficient within a surface area. This paper aims to first examine the rationality of these two evaluation approaches via verified numerical simulations of 3D heave-only floating breakwaters in regular and irregular waves. A new index—a representative transmission coefficient—is then presented for one to easily compare the wave attenuation performances of different 3D floating breakwater designs.


Sign in / Sign up

Export Citation Format

Share Document